




BCH-5056

Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer's Library

# Value and Quality Assurance of Byproduct Feeds

Kathy H. Roy, Extension Educator, University of Idaho Robert M. Kattnig, Assistant Livestock Specialist, University of Arizona

The beef cattle industry uses many nontraditional feeds, including byproducts from other agricultural industries. These feeds may provide important economic advantages in ration formulation. However, the nutritional quality of the feedstuff and freedom from harmful residues and toxins are also key components of the decision making process.

### Cost

Actual byproduct cost is not the only factor to consider when feeding alternate feeds. There may be high labor, transportation, and storage costs associated with the feedstuff. Potatoes, for example, may have dry matter values as low as ten percent and be difficult and costly to transport. Many of the cull fruits and vegetables are difficult to store, resulting in a high rate of spoilage, which further increases the cost of the feed delivered to the feedbunk.

# Factors Affecting Quality

Another difficulty associated with byproduct feeds is variation in composition, resulting in difficult ration quality control. Unlike traditional feeds, byproduct feeds do not have established nutrient values and other guidelines that can aid with assurance of a quality product. Therefore, it is important to have each feed periodically analyzed for its chemical composition. The analysis should include dry matter, protein, fiber, energy, minerals, harmful residues, and toxins.

A guaranteed analysis is sometimes provided by the seller. If it is not possible to obtain actual nutrient composition, tabulated data may prove a useful source of information. When using tabular values, keep in mind that feeds vary in their composition, sometimes by 10 - 15 percent.

All feedstuffs vary in the nutrient composition because of a variety of factors, including but not limited to year produced, source, moisture content, and milling and/or processing methods (Table 1). Of these factors, water content has the greatest effect on feed value. The amount of feed that can be ingested is limited by moisture content and rumen capacity among other factors. Beef cattle will consume about 1.5 - 3.0 percent of their body weight per day when feed is in a dry form.

Other factors affecting intake include feed quality, and the animal's sex, age, and physiological state. Thus, an animal may not be able to eat enough to fulfill its nutritional needs for growth and production. The result is poor performance and reduced production. The recommendation for producers is to limit high-moisture feeds to less than half of the total dry matter in the diet.

### **Chemical Residues**

Another factor affecting quality of byproduct feeds is presence of chemical residues. Registered pesticides are often applied to crops that are sources of byproduct feeds. Some of these pesticides are explicitly labeled, stating that no part of the treated plant is to be used for livestock or human consumption. On the other hand, consumption of many feeds from pesticide-treated crops is allowed after a specified waiting period. If there are residues in the feed, there is a good possibility they will accumulate in animal tissues, making meat or milk unsalable.

### Table 1. Composition of byproduct and unusual feedstuffs.\*

| Dry matter basis                        | As fed       | TDN          |              |       | СР           | EE         | CF          | ADF          | Ash        | Ca        | Р         |
|-----------------------------------------|--------------|--------------|--------------|-------|--------------|------------|-------------|--------------|------------|-----------|-----------|
| Feed name                               | %            | %            | Nem          | Neg   | %            | %          | %           | %            | %          | %         | %         |
| Alfalfa seed screenings                 | 90.0         | 86.0         | 0.94         | 0.63  | 34.4         | 10.9       | 12.3        | 15.0         | 5.6        | -         | -         |
| Apple pomace, dried                     | 89.0         | 69.0         | 0.72         | 0.44  | 4.9          | 5.1        | 17.0        | 26.0         | 2.2        | 0.13      | 0.12      |
| Apple pulp silage                       | 21.4         | 74.0         | 0.78         | 0.47  | 7.8          | 6.3        | 20.6        | 26.0         | 4.9        | 0.10      | 0.10      |
| Apples                                  | 17.0         | 70.0         | 0.72         | 0.44  | 2.8          | 2.2        | 7.3         | 9.0          | 2.2        | 0.06      | 0.06      |
| Apricots, dried                         | 90.0         | 77.1         | 0.83         | 0.51  | -            | -          | 0.0         | 0.0          | -          | -         | -         |
| Asparagus butts, dried                  | 91.0         | 49.0         | 0.45         | 0.13  | 15.6         | 1.0        | 31.9        | 40.0         | 7.7        | -         | -         |
| Bakery waste, dried                     | 92.0         | 89.0         | 0.99         | 0.65  | 11.9         | 14.9       | 1.0         | 1.0          | 1.7        | 0.07      | 0.11      |
| Barley bran                             | 91.0         | 59.0         | 0.57         | 0.29  | 12.5         | 4.3        | 21.3        | 27.0         | 7.0        | -         | -         |
| Barley distillers dried grains          | 92.0         | 69.0         | 0.70         | 0.43  | 30.1         | 12.6       | 11.0        | 14.0         | 2.0        | -         |           |
| Barley malt sprouts                     | 92.0         | 68.0         | 0.69         | 0.42  | 28.0         | 1.6        | 15.6        | 20.0         | -          | 0.26      | 0.84      |
| Barley mill run                         | 90.0         | 70.0         | .071         | 0.44  | 11.7         | 2.8        | 15.7        | 20.0         | 4.6        | -         | -         |
| Barley straw                            | 90.0         | 39.0         | 0.33         | 0.00  | 4.1          | 1.8        | 41.8        | 52.0         | 6.6        | 0.37      | 0.11      |
| Bean straw, green                       | 89.0         | 51.0         | 0.47         | 0.15  | 20.5         | 1.7        | 24.0        | 30.0         | 14.5       | 1.44      | 0.27      |
| Bean straw, kidney                      | 86.0         | 55.0         | 0.53         | 0.22  | 9.9          | 1.6        | 34.7        | 43.0         | 10.4       | -         | -         |
| Bean straw, lima                        | 90.0         | 58.0         | 0.57         | 0.25  | 7.6          | 1.8        | 31.0        | 39.0         | 8.2        | 0.10      | 0.41      |
| Beans, cannery residue                  | 9.4          | 72.5         | 0.76         | 0.45  | 23.5         | 3.1        | 13.5        | 17.0         | -          | -         | -         |
| Beans, green                            | 89.0         | 63.0         | 0.63         | 0.35  | 16.9         | 3.8        | 25.3        | 32.0         | 9.0        | -         | _         |
| Beans, kidney                           | 89.0         | 83.0         | 0.90         | 0.60  | 24.7         | 1.5        | 4.7         | 6.0          | 4.2        | 0.12      | 0.45      |
| Beans, lima                             | 90.0         | 83.0         | 0.90         | 0.60  | 23.1         | 1.5        | 5.1         | 6.0          | -          | 0.09      | 0.42      |
| Beans, pinto                            | 90.0         | 83.0         | 0.90         | 0.60  | 25.2         | 1.4        | 4.5         | 6.0          | 4.8        | 0.16      | 0.39      |
| Beet pulp, molasses dried               | 92.0         | 78.0         | 0.81         | 0.54  | 9.9          | 0.6        | 17.0        | 26.0         | 6.4        | 0.61      | 0.00      |
| Beet pulp silage                        | 11.1         | 75.0         | 0.80         | 0.52  | 13.5         | 1.9        | 31.9        | 40.0         | 4.0        | -         | -         |
| Beet tops, sugar                        | 17.0         | 58.0         | 0.56         | 0.32  | 15.1         | 1.1        | 11.2        | 14.0         | 22.9       | 1.01      | 0.22      |
| Brewers grains, wet                     | 24.0         | 67.0         | 0.66         | 0.27  | 26.0         | 7.2        | 16.0        | 23.0         | 4.1        | 0.29      | 0.54      |
| Cactus, prickly pear                    | 20.6         | 58.8         | 0.59         | 0.26  | 4.8          | 2.3        | 13.4        | 17.0         | 18.9       | 9.16      | 0.12      |
| Carrot tops                             | 16.0         | 74.0         | 0.33         | 0.49  | 13.1         | 3.8        | 18.1        | 23.0         | 15.0       | 1.94      | 0.12      |
| Carrots                                 | 13.0         | 82.0         | 0.88         | 0.49  | 10.3         | 1.4        | 9.1         | 11.0         | 9.7        | 0.37      | 0.13      |
| Cauliflower                             | 9.0          | 70.0         | 0.73         | 0.33  | 30.0         | 2.2        | 11.1        | 14.0         | -          | 0.37      | 0.52      |
| Citrus pulp                             | 18.3         | 82.5         | 0.90         | 0.72  | 6.6          | 3.3        | 12.6        | 16.0         | 7.7        | -         | 0.07      |
| Citrus pulp, dried                      | 90.0         | 77.0         | 0.30         | 0.72  | 6.9          | 3.8        | 14.0        | 23.0         | 7.0        | 2.07      | 0.13      |
| Clover seed screenings                  | 88.1         | 68.8         | 0.72         | 0.33  | 33.1         | 5.0<br>7.7 | 13.1        | 16.0         | 13.0       | -         | 0.15      |
| Corn distillers dried grains            | 92.0         | 84.0         | 0.90         | 0.40  | 29.5         | 9.9        | 13.0        | 20.0         | 2.7        | 0.10      | 0.40      |
| Corn ears, ground                       | 92.0<br>87.0 | 80.0         | 0.86         | 0.55  | 9.3          | 3.5        | 8.9         | 11.0         | 1.5        | 0.10      | 0.40      |
| Corn gluten meal                        | 90.0         | 87.0         | 0.99         | 0.65  | 48.0         | 3.3<br>2.4 | 4.2         | 5.0          | 3.9        | 0.05      | 0.20      |
| Corn stover                             | 90.0         | 50.0         | 0.33         | 0.05  | 48.0<br>5.9  | 1.3        | 37.1        | 46.0         | 5.8        | 0.15      | 0.45      |
| Corn cannery waste, silage              | 29.0         | 72.0         | 0.48         | 0.13  | 8.8          | 2.7        | 27.0        | 40.0<br>34.0 | 5.9        | 0.45      | 0.63      |
| Cottonseed meal, 41%                    | 20.0         | 12.0         | 0.70         | 0.44  | 0.0          | 2.1        | 21.0        | 54.0         | 5.5        | 0.54      | 0.05      |
| protein, solv-extd                      | 92.0         | 75.0         | 0.77         | 0.50  | 44.8         | 2.3        | 13.0        | 20.0         | 6.9        | 0.17      | 1.31      |
| Cottonseed, whole                       | 93.0         | 98.0         | 1.17         | 0.73  | 24.9         | 21.1       | 18.0        | 29.0         | 3.9        | 0.17      | 0.73      |
| Fat                                     | 95.0         | 200.0        | 2.14         | 1.34  | 0.0          | 100        | 0.0         | 0.0          | -          | -         |           |
| Feather meal                            | 90.0         | 63.0         | 0.63         | 0.35  | 87.4         | 2.9        | 0.6         | 1.0          | 3.8        | 0.20      | -<br>0.75 |
| Fish meal                               | 88.0         | 67.0         | 0.68         | 0.33  | 67.2         | 6.3        | 1.1         | 1.0          | 20.8       | 6.20      | 3.77      |
| Flax seed screenings                    | 91.0         | 66.0         | 0.03         | 0.40  | 17.3         | 10.9       | 1.1         | 18.0         | 7.8        | 0.20      | 0.47      |
| Grape pomace, dried                     | 91.0<br>91.0 | 30.0         | 0.34         | 0.39  | 17.3         | 7.6        | 33.0        | 18.0<br>54.0 | 7.8<br>5.5 | 0.40      | 0.47      |
| Hominy feed, 5% fat                     |              |              | 0.34<br>1.05 | 0.68  |              | 7.0        |             |              | 3.0        |           |           |
|                                         | 91.0<br>93.0 | 92.0<br>32.0 | 0.24         | 0.08  | 11.8<br>24.8 | 7.2<br>5.1 | 6.0<br>24.3 | 12.0<br>30.0 | 5.0<br>6.0 | 0.06      | 0.58      |
| Hops, spent, dried<br>Kale, aerial part |              |              | 0.24         | 0.00  |              |            |             |              |            | -<br>1.61 | -<br>0.51 |
| -                                       | 11.6         | 65.9<br>75.2 |              |       | 20.8         | 4.5        | 13.6        | 17.0         | 15.8       |           |           |
| Lentil seeds                            | 88.5         | 75.2         | 0.80         | 0.49  | 28.0         | 1.3        | 3.8         | 5.0          | 2.9        | 0.09      | 0.42      |
| Lettuce                                 | 5.0          | 51.0         | 0.47         | 0.15  | 22.0         | 4.1        | 11.2        | 14.0         | 15.9       | 0.86      | 0.46      |
| Linseed meal, 36%                       | 00.0         | 00.0         | 0.01         | 0 5 4 | 40.7         | 1 1        | 10.9        | 10.0         | C A        | 0.49      | 0.07      |
| protein, solv-extd                      | 90.0         | 82.0         | 0.81         | 0.54  | 40.7         | 1.1        | 10.3        | 13.0         | 6.4        | 0.43      | 0.95      |

\* The values in the table were taken from various sources, including WREP No. 39, Byproducts and unusual feedstuffs in livestock rations: Some effects of feeding cull domestic onions (Allium cepa) to sheep, by J. H. Kirk, DVM, MS, and M. S. Bulgin, DVM, UI Caine Teaching Center, Caldwell, ID; Nutrient requirements of beef cattle; and unpublished data.

# Table 1. (cont'd)\*

| Dry matter basis              | As fed | TDN   |      |      | СР   | EE   | CF   | ADF  | Ash  | Ca   | Р    |
|-------------------------------|--------|-------|------|------|------|------|------|------|------|------|------|
| Feed name                     | %      | %     | Nem  | Neg  | %    | %    | %    | %    | %    | %    | %    |
| Malt sprouts, 24% protein     | 92.0   | 68.0  | 0.69 | 0.42 | 28.0 | 1.6  | 15.6 | 20.0 | 6.7  | 0.26 | 0.84 |
| Malt, barley, Northwest       | 91.0   | 77.0  | 0.82 | 0.51 | 32.2 | 7.2  | 18.0 | 24.0 | 4.0  | 3.22 | 0.57 |
| Manure, cage layer, dried     | 90.0   | 52.0  | 0.49 | 0.17 | 28.0 | 2.0  | 12.7 | 16.0 | -    | 8.80 | 2.50 |
| Melons                        | 4.1    | 70.7  | 0.74 | 0.43 | 11.5 | 3.3  | 23.0 | 29.0 | 6.6  | -    | -    |
| Milk, cattle, whole, dried    | 94.0   | 130.0 | 1.64 | 0.91 | 26.9 | 27.1 | 0.0  | 0.0  | 5.6  | 0.89 | 0.72 |
| Mint silage                   | 23.2   | -     | -    | -    | 13.6 | 1.4  | 31.9 | 9.2  | -    | 1.2  | 0.54 |
| Molasses, beet                | 75.0   | 75.0  | 0.87 | 0.55 | 11.2 | 0.0  | 0.0  | 0.0  | 13.5 | 0.07 | 0.03 |
| Oat mill feed                 | 92.9   | 33.7  | 0.26 | .00  | 3.1  | 1.1  | 35.1 | 44.0 | 6.4  | 0.11 | 0.05 |
| Oat straw                     | 90.0   | 45.0  | 0.41 | 0.09 | 4.5  | 2.4  | 40.3 | 50.0 | 7.0  | 0.27 | 0.10 |
| Onion waste, dried            | 89.4   | 61.2  | 0.62 | 0.30 | 9.7  | 4.9  | 22.1 | 28.0 | 6.4  | -    | -    |
| Onions                        | 10.0   | 63.0  | 0.57 | 0.25 | 12.6 | 2.0  | 22.6 | 28.0 | 8.0  | 1.80 | 0.21 |
| Orange pulp, wet              | 25.0   | 77.0  | 0.83 | 0.51 | 8.9  | 1.8  | 13.0 | 16.0 | 3.8  | 0.21 | 0.28 |
| Pea hay                       | 88.0   | 58.0  | 0.56 | 0.27 | 13.6 | 2.5  | 30.2 | 38.0 | 7.6  | 1.39 | 0.28 |
| Pea meal, dried               | 90.0   | 84.0  | 0.91 | 0.61 | 19.7 | 1.6  | 26.3 | 33.0 | 3.4  | _    | -    |
| Pea vine silage               | 24.0   | 56.0  | 0.54 | 0.23 | 13.1 | 3.3  | 30.0 | 49.0 | 8.2  | 1.31 | 0.24 |
| Peaches                       | 10.0   | 80.0  | 0.86 | 0.55 | 8.7  | 3.7  | 10.3 | 13.0 | -    | _    | -    |
| Pears, cannery residue        | 15.2   | 69.3  | 0.72 | 0.41 | 3.9  | 1.3  | 17.1 | 21.0 | 2.0  | -    | -    |
| Peas, cull, dried             | 90.0   | 83.0  | 0.89 | 0.59 | 26.5 | 1.2  | 6.0  | 9.0  | 3.1  | 0.13 | 0.47 |
| Potato meal, dried            | 91.0   | 77.0  | 0.81 | 0.53 | 10.6 | 0.3  | 2.3  | 3.0  | 4.7  | 0.08 | 0.22 |
| Potatoes                      | 23.0   | 80.0  | 0.85 | 0.57 | 9.6  | 0.3  | 2.4  | 3.0  | 4.7  | 0.05 | 0.24 |
| Potatoes, dried               | 90.0   | 77.0  | 0.80 | 0.53 | 8.7  | 0.3  | 2.0  | 3.0  | 4.8  | 0.07 | 0.21 |
| Potatoes, silage              | 25.0   | 79.0  | 0.83 | 0.55 | 8.2  | 0.4  | 4.0  | 5.0  | 5.5  | 0.04 | 0.23 |
| Potato waste, wet             | 14.0   | 82.0  | 0.89 | 0.59 | 7.0  | 1.5  | 9.0  | 11.0 | 3.0  | 0.16 | 0.25 |
| Prunes, dried                 | 90.0   | 77.8  | 0.83 | 0.52 | -    | -    | 0.0  | 0.0  | -    | -    | -    |
| Pumpkins                      | 9.0    | 85.0  | 0.93 | 0.62 | 16.2 | 8.9  | 14.2 | 18.0 | 8.9  | 0.24 | 0.43 |
| Raisins, cull                 | 85.0   | 48.0  | 0.44 | 0.10 | 4.0  | 1.1  | 5.2  | 7.0  | 3.5  | -    | -    |
| Rapeseed meal, Canadian,      |        |       |      |      |      |      |      |      |      |      |      |
| solv-extd                     | 92.0   | 70.9  | 0.74 | 0.43 | 44.0 | 1.2  | 10.1 | 13.0 | 7.8  | 0.72 | 1.01 |
| Rapeseed meal, solv-extd      | 91.0   | 68.0  | 0.69 | 0.42 | 41.0 | 1.7  | 12.9 | 16.0 | 7.8  | 0.67 | 1.04 |
| Rice straw                    | 91.0   | 41.0  | 0.35 | 0.02 | 4.5  | 1.4  | 35.1 | 44.0 | 16.6 | 0.21 | 0.08 |
| Rutabaga tops                 | 10.9   | 68.4  | 0.71 | 0.40 | 18.6 | 4.6  | 14.1 | 18.0 | 19.9 | -    | -    |
| Rye distillers dried grains   | 92.0   | 48.0  | 0.44 | 0.10 | 22.1 | 8.1  | 14.4 | 18.0 | 2.7  | 0.14 | 0.45 |
| Safflower hulls               | 91.3   | 13.3  | 0.00 | 0.00 | 3.6  | 3.7  | 58.2 | 73.0 | 1.8  | -    | -    |
| Safflower meal, 20%           |        |       |      |      |      |      |      |      |      |      |      |
| protein, solv-extd            | 92.0   | 55.0  | 0.53 | 0.22 | 23.9 | 1.1  | 34.0 | 43.0 | 4.3  | 0.37 | 0.80 |
| Sagebrush, browse             | 50.5   | 49.9  | 0.47 | 0.14 | 12.9 | 9.2  | 24.8 | 31.0 | 9.7  | 1.01 | 0.25 |
| Screenings, grain, good grade | 90.0   | 70.0  | 0.70 | 0.44 | 14.2 | 5.2  | 13.1 | 16.0 | 9.8  | 0.48 | 0.43 |
| Screenings, refuse            | 90.0   | 56.0  | 0.55 | 0.29 | 11.5 | 4.3  | 31.0 | 40.0 | 10.6 | 0.46 | 0.32 |
| Sorghum silage, 30% DM        | 30.0   | 57.0  | 0.67 | 0.30 | 7.3  | 2.7  | 26.0 | 33.0 | 5.3  | 0.33 | 0.20 |
| Sunflower meal, solv-extd     | 93.0   | 65.0  | 0.64 | 0.38 | 50.3 | 1.2  | 12.0 | 30.0 | 6.3  | 0.40 | 1.10 |
| Sunflower seeds, whole        | 94.0   | 83.0  | 0.90 | 0.60 | 17.9 | 27.7 | 31.0 | 39.0 | 3.3  | 0.18 | 0.56 |
| Sweet potatoes                | 31.0   | 80.0  | 0.85 | 0.57 | 5.0  | 1.3  | 6.0  | 8.0  | 3.6  | 0.09 | 0.13 |
| Tomatoes                      | 6.0    | 69.0  | 0.70 | 0.43 | 16.4 | 5.0  | 9.1  | 11.0 | -    | 0.16 | 0.49 |
| Turnip tops                   | 13.0   | 67.0  | 0.68 | 0.40 | 21.8 | 2.6  | 10.3 | 13.0 | 16.8 | 2.92 | 0.51 |
| Wheat bran                    | 89.0   | 70.0  | 0.69 | 0.44 | 18.0 | 5.0  | 11.0 | 14.0 | 6.8  | 0.12 | 1.32 |
| Wheat mill run                | 90.0   | 74.0  | 0.73 | 0.49 | 17.0 | 4.8  | 9.0  | 11.0 | 5.8  | 0.10 | 1.13 |
| Wheat straw                   | 90.0   | 41.0  | 0.35 | 0.02 | 3.6  | 0.0  | 41.5 | 52.0 | 7.2  | 0.19 | 0.09 |
| Whey, dried                   | 90.0   | 84.0  | 0.93 | 0.61 | 14.2 | 0.8  | 0.2  | 0.0  | 9.0  | 0.95 | 0.80 |
| Whey, liquid                  | 7.0    | 78.0  | 0.81 | 0.54 | 14.0 | 4.3  | 0.0  | 0.0  | 10.1 | 0.98 | 0.81 |
| Yeast, brewers, dried         | 93.0   | 78.0  | 0.81 | 0.54 | 48.3 | 0.8  | 3.0  | 4.0  | 7.7  | 0.14 | 1.54 |
|                               |        |       |      |      |      |      |      |      |      |      |      |

\* The values in the table were taken from various sources, including WREP No. 39, Byproducts and unusual feedstuffs in livestock rations: Some effects of feeding cull domestic onions (Allium cepa) to sheep, by J. H. Kirk, DVM, MS, and M. S. Bulgin, DVM, UI Caine Teaching Center, Caldwell, ID; Nutrient requirements of beef cattle; and unpublished data.

When purchasing byproduct feeds, you should request that the seller disclose which, if any, pesticides have been used. If you are unable to obtain this information, you should have a chemical analysis performed on the feed to determine if there are any potentially harmful chemicals or heavy metals present.

#### Palatability

Palatability should also be considered when purchasing byproducts. Alternate feeds should be used with caution and introduced into the ration gradually, no matter how desirable the feed is. Generally, animals react unfavorably to sudden, radical changes in their feed. Byproduct feeds that are not very palatable should be fed in limited quantities and included only in a complete mixed diet.

Some feeds contain anti-nutritional factors or properties, or toxic substances that may affect performance. For example, cull onions contain a toxic alkaloid that results in anemia in beef cattle. Also, large amounts of cull fruits or vegetables can be very laxative to cattle and must be fed in limited quantities to prevent negative effects on digestion.

#### **Pricing Feeds**

Several methods will help producers evaluate byproduct feeds according to water content and/or nutrients provided. Examples of adjusting feeds for dry matter content and determining the cost per amount of nutrient are provided below. In these examples, conventional feeds along with alternate feeds will be used. The principles may be applied to all byproduct feeds and their constituents. An important concept is not to pay for water. This method should be used to compare prices for two or more feeds on the basis of nutrient composition on a dry basis.

### Example 1:

The market value of 88 percent dry matter corn (DM#1) is \$110 per ton (P#1) and you want to determine a comparable price (X) for high moisture corn that has 75 percent dry matter (DM#2).

| Step 1. | P#1  | =             | Х         | or       | \$110 | = | Х    |  |
|---------|------|---------------|-----------|----------|-------|---|------|--|
|         | DM#1 |               | DM#2      |          | 0.88  |   | 0.75 |  |
|         | _    |               |           |          |       |   |      |  |
| Step 2. |      |               | -         |          |       |   |      |  |
|         | (DN  | <i>/</i> I#1) | (X) = (P# | 1) (DM   | #2)   |   |      |  |
| or      |      |               |           |          |       |   |      |  |
|         | ((   | 0.88)         | (X) = (11 | 0) (0.75 | 5)    |   |      |  |
|         |      |               |           |          |       |   |      |  |

Step 3. Divide both sides of the equation by DM#1.

X = (P#1) (DM#2) or X = (110) (0.75)  $\frac{DM#1}{X} = \frac{0.88}{\$93.75}$ 

When dry corn is \$110 per ton, high moisture corn should be \$93.70 per ton.

Since byproduct feeds fluctuate in moisture content,

it is important to determine the actual value so you can ensure that you are paying a fair price for the product. In most cases, feeds differ in both dry matter and nutrient content. Thus, to compare them economically, it is best to determine the cost per amount of nutrient each feed provides.

Example 2 demonstrates a comparison to determine if canola meal (CM) or safflower meal (SM) is the least expensive source of protein. The CM has 44.0 percent protein and 92 percent dry matter, and the SM has 25.4 percent protein and 90 percent dry matter. The cost for CM is \$90.00 per ton and the cost for SM is \$150 per ton, both on an as-fed basis.

Adjust the crude protein percentage to an as fedbasis because the price is expressed on an as-fed basis (CM = 92% DM, SM = 90% DM).

#### Canola meal:

| Step 1: | % protein | = | ?      | or | 44 = | ?  |
|---------|-----------|---|--------|----|------|----|
|         | 100% DM   |   | 92% DM |    | 100  | 92 |

Step 2: Cross multiply. (100) (?) = (44) (92) or (100) (?) = 4,048

Step 3: Divide both sides of the equation by 100. ? = 4,048 = 40.48%

| 4,048 | = |
|-------|---|
| 100   |   |

The canola meal contains 40.48 percent protein on an as-fed basis.

Safflower meal:

Repeat the steps above.

The safflower meal contains 22.86 percent protein on an as-fed basis.

Now it is necessary to determine the cost per amount of protein provided. Cost per unit of nutrient equals cost per ton divided by the nutrient content.

CM = \$150 = \$370.55 per ton protein 4048

Canola meal provides protein at a lower cost than saffower meal. Without comparing the cost per unit of nutrient, a producer may have chosen safflower meal.

Authors: Kathy H. Roy, Extension Educator, University of Idaho Robert M. Kattnig, Assistant Livestock Specialist, University of Arizona Adapted from the Cattle Producer's Library

This publication was prepared in cooperation with the Extension Beef Cattle Resource Committee and its member states and produced in an electronic format by the University of Wisconsin-Extension, Cooperative Extension. Issued in furtherance of Cooperative Extension work, ACTS of May 8 and June 30, 1914.

BCH-5056 Value and Quality Assurance of Byproduct Feeds