Toxicology Update For Veterinarians

Scott Radke

Veterinary Diagnostic Laboratory

Iowa State University

Outline

- Multiple cases of chondrodysplasia and dwarfism in calves
- Lead reminder
- Water source awareness
 - Nitrate & urea poisoning

Multiple cases of chondrodysplasia & dwarfism in beef calves

Index Case: Steamboat Rock, IA 3/6/19

- 9 of 12 first calf heifers have given birth to non-viable dwarf calves
 - Calves from mature cows unaffected
- Gross necropsy
 - Enlarged epiphyses in all long bones of the limbs
 - Shortened diaphyses
 - Shortened overall bone/limb length (Femur:~30% normal length)

Additional Cases

Case #	Location (IA)	Date	# Affected	Lesions
2	Maynard	3-11-19	93 (50%)	Limb deformities (Enlarged joints, crooked legs) Shortened legs "Bulldog" heads (30%)
3	Postville	Within the		
4	Muscatine	same	Multiple	Consistent with other cases
5	Audubon	others		
6	Riceville	3-20-19	3	Joint laxity Enlarged joints Shortened legs
7	Clarksville	3-22-19	1	Shortened abnormal legs
8	Cherokee	3-26-19	6	Enlarged joints and short legs

Additional Cases

2020

Case #	Location (IA)	Date	# Affected	Lesions
1	Maynard	2-26-20	4	Limb deformities (Enlarged joints) Legs folded underneath Shortened legs
2	Cherokee	3-2-20	2-4	Joint laxity Enlarged joints Shortened legs
3	Dyersville	3-20-20	4	Shortened abnormal legs Enlarged joints
4	Griswold	5-21-20	7	Enlarged joints Severely shortened legs Domed head

Newborn Calf (April 2019)

Dwarf Calves

Dwarf Calves

Humerus

Physis: One day old unaffected calf

Reserve zone

Proliferative zone

Hypertrophic zone

Case 2

Ancillary Testing

- BVD Negative on all submitted cases
- Trace mineral analysis (Liver)
 - Manganese Below reference range
 - Whole blood Low
 - Zinc Below reference range (1 sample)
- Genetic testing
 - Not performed at ISU VDL
 - Independent genetic testing by clinics
 - Genetic variability reported among calves

Investigation into Affected Sites

Questionnaire Focus

• Herd history

- Breed
- Recent introductions
- Management practices
- Past history of:
 - Reproductive failure
 - Congenital defects
 - Infectious disease
- Gross lesions/clinical description
- Ration during the entire length of gestation
 - Ration components
 - Mineral supplementation

- Number of affected calves vs total herd size
- Characteristics of the dams of affected and unaffected calves
 - Sire information
- Environment during the entire length of gestation
 - Pasture vs dry lot vs mixed
 - Teratogenic plant exposure
- Treatment

Commonalities Between Sites

- Pastures became poor in October (45⁺ Days earlier than usual)
 - Cattle were moved to dry lot and fed rations with high amounts of corn silage
 - Most severely affected site
 - Group of heifers that stayed on a different pasture 45 days longer \rightarrow 0 affected calves
- High percentage of ration was corn silage
 - Only feedstuff in majority of cases
- All sites Free choice mineral offered

Differentials

- In utero viral infection
 - BVD not detected in submitted cases
 - Can't be ruled out in other cases
- Genetic
 - Unlikely Varied genetics between herds, different sires, different breeds
 - Purebred angus herd Different sires each of 3 years

• Poor general nutrition?

- Drought
- High amounts of silage
- Manganese deficiency

Differentials

- Manganese deficiency
 - Cofactor in enzymatic pathways for glycosaminoglycan and collagen synthesis
 - 2016-2019: 47% of trace mineral panels on bovine liver have been below reference range (2.5-6.0ppm)
 - Cases of chondrodysplasia tended to have very low manganese levels
 - Current case series: 0.8ppm, 1.0ppm, 1.1ppm
 - Previous cases at ISU-VDL: 0.6ppm

• Previous research reproduced disproportionate dwarfs/brachygnathia

 Hansen, et al. Feeding a low manganese diet to heifers during gestation impairs fetal growth and development. 2006. Journal of Dairy Science. 89:4305-4311

Differentials

- Role of increased duration/amount of corn silage
 - Grasses have higher concentrations of manganese; Straw and corn silage can have relatively low concentrations; 92% of corn silage samples contained Mn levels below requirement
 - Hidiroglou. 1979. Manganese in ruminant nutrition. Canadian journal of animal science. 59:217-236.
 - Rations high in ensiled components as the sole overwinter feed associated with disproportionate dwarfism/joint laxity
 - Ribble, et al. 1989. Congenital joint laxity and dwarfism: A feed-associated congenital anomaly of beef calves in Canada. Canadian Veterinary Journal. 30:331-338.

Iron and other compounds may decrease manganese bioavailability

Case 8: Calf from Video (July 2019)

Case 6: 2 Month Follow-up Student Visit

Case 6: Affected Yearling w/ Age Matched Controls

2019 Follow-Up

- No reported cases sites affected in 2019
- Mineral either supplemented through TMR or injection
- Questionnaires planned to be sent out for additional information

Lead Reminder

Common Sources

- Lead batteries (~60% lead)
 - Discarded fence line batteries \rightarrow freeze \rightarrow crack \rightarrow lead plates exposed
 - Junk piles
 - Old automobiles
- Crankcase oil
- Grease containers

• Building foundations

Clinical Signs

- Neurologic (CNS)
 - Blindness
 - \uparrow vocalization
 - Ataxia
 - Head pressing
 - Tremoring & Convulsions
 - Bruxism
 - Circling
 - Aimless wandering
 - Found dead

- Gastrointestinal
 - Anorexia
 - Rumen stasis
 - Gaunt

*May not observe GI signs

Sample Collection & Diagnostic Testing

Brain alone can't Dx

lead poisoning

- Ante mortem
 - Whole blood
 - Milk
- Post mortem
 - Liver
 - Kidney
 Bone
 - GI Ct
 - Brain – – – ► Histopath
- Other
 - Unknowns
 - Feed

Prevention

- Evaluate the environment
 - Unexpected finds
- Remove or isolate potential sources

Water Source Awareness

Nitrate & Urea Poisoning

Causes of Intoxication 2019 & 2020

- Nitrate / Urea based fertilizers
 - Application on forages
- Water
 - Heavy rains immediately after application
 - Fertilizer tanks used for water
 - Tanks reported to have been washed (Multiple Times)

Clinical Signs

- Found dead
 - Acute death
- Ataxia and tremors
- Urea
 - Prostration
 - \uparrow Urination
 - Frothing at mouth
 - Diarrhea

- Nitrate
 - Brown / Chocolate blood
 - Muddy mucous membranes
 - Respiratory distress

Sample Collection & Testing

Biological Samples Ocular fluid

- Serum
- Rumen content
- Rumen pH

Collect, seal, & freeze samples <u>ASAP</u> following death Urease enzyme remains active even after death Acidification of rumen

>12 hours (moderate climate) Too much autolysis has occurred $\rightarrow \downarrow$ diagnostic value

- Feed, Forage, Supplement
 - ½ gallon bag
- Water
 - 250 ml

Prevention

- Do **<u>not</u>** provide water in tanks used for fertilizer
 - Washed out or not
- Use a new tank / designated water tank
- Be aware of fertilizer applications and heavy rains

Eliminate exposure to suspected sources

Questions?

Scott Radke slradke@iastate.edu

To ask questions, type into the Q&A or Chat. To find these options, hover your mouse over the screen and click on the chat or question icon. If not visible, click bubble with three dots and select Q&A

