Numition, lacitutes and management of the Holstein

LEE

Steven Rust Michigan State University

An Iowa State alum and a North Dakota alum are standing next to each other in the men's room. The Iowa State grad finishes first and heads for the door. The North Dakota grad says, "At North Dakota State University, they teach us to wash our hands after we use the bathroom." Unimpressed, the Iowa State alum says, "At Iowa State University, they teach us not to pee on our hands."

How are Holsteins different than native steers

- More docile
- Easily bored
 - More pen maintenance
 - Sort feed
- More bloats and metabolic problems
- More bullers
- More dust creation
- Wetter pens
- "Suicidal tendencies"/injuries

Eng, 2005

CARCASS TRAITS WITHIN ESTIMATED BREED TYPES (NATIONAL BEEF QUALITY AUDIT - 2000^a)

	Breed type		
Trait	Native	Bos indicus	Dairy
USDA yield grade	3.0 ^e	3.0 ^e	3.4 ^f
USDA quality grade ^b	684 ^f	662 ^e	710 ^g
Adjusted fat thickness, in	. 51 ^f	. 51 ^f	.31e
Hot carcass weight, lb	784.5 ^f	767.8 ^e	801.9 ^g
Longissimus muscle area, in ²	13.2 ^g	13.0 ^f	11.7 ^e
Kidney, pelvic, and heart fat, %	2.3 ^e	2.2 ^e	3.6 ^f
Marbling score ^c	419^f	381 ^e	489 ^g
Overall maturity ^d	166	168	168

^aMcKenna et al. 2002. JAS. 80:1212-1222 ^b600=Select⁰⁰, 700=Choice⁰⁰, 800=Prime⁰⁰ ^c300=Slight⁰⁰, 400=Small⁰⁰, 500=Modest⁰⁰ ^d100=A⁰⁰, 200=B⁰⁰

^{e,f,g}Means within a row lacking common superscript letter differ (P<0.05)

Variables used in closeout comparisons

- In weight- 600 lb
- Shrunk out weight- 1250 lb
- **ADG- 3.30** lb
- Feed/gain- 6.61 lb DMI/ lb gain
- Vet-med- \$25/hd
- Yardage- \$.40/hd/d
- Interest- 6%
- Trucking- \$40/hd

Weights			cont	rol
	Purchase wt	lb	500	600
	Shrunk sale wt	lb	1150	113
D.:				
Prices	Delivered purchase price	\$/cwt	\$64.00	\$148.0
	Expected sale price	\$/cwt	\$64.00	\$135.0
		.,	40.000	
Gross Ma	rgin			
	Gross revenue	\$/hd		\$1,526.8
	Purchase cost	\$/hd		\$888.0
	Gross margin	\$/hd		\$638.8
Pertormar	nce	11	2.70	2.0
	Daily gain	ID .	2.70	2.8
	Feed/gain	DM basis	6./5	6.7
	Out shrink	%	3.00%	4.00%
	Death loss	%	1.00%	1.02%
	Days on feed	d		20
Feed costs				
	Feed price (as-fed basis)	\$/ton		225.5
	Feed price (DM basis)	\$/ton		\$283.6
	Feed cost	\$/hd		\$555.0
Other ope	rating costs			
	Yardage			
	Rate	\$/hd/d	\$0.30	\$0.4
	Amount	\$/hd		\$80.3
	Veterinary & medication	\$/hd	\$10.00	\$25.0
	Marketing			
	Sales commissions	\$/hd	\$8.00	\$5.0
	Transportation	\$/hd	\$5.00	\$40.0
	Beef Checkoff	\$/hd	\$1.00	\$1.0
	Options/Hedge cost	\$/hd		
	Other input	\$/hd	\$0.00	\$0.0
	Death loss	\$/hd		\$9.0
	Operating cost subtotal	\$/hd		\$160.3
	Interest			
	Interest rate	0/0	9.50%	6.00%
	Interest on cattle	1.00	1.00	\$30.0
	Interest on feed	0.50	0.50	\$9.2
	Interest on other operating	0.50	0.50	\$2.5
	Total interest	\$/hd	0.50	\$41.8
		.,		÷
Fotal oper	ating costs, excluding animal purcha	ise S	5/hd	\$757.1
Net return	to labor management & fixed costs			
Net return	i to iabor, managinent, ee nxeu costs	0 (1 1		

Energy requirements

		<u>NE_gReq., Mcal/cwt</u>	<u>ADG, lb</u>
1)	Feedlot	55-68	2.4-4.5
2)	Backgrounding	45-55	1.8-2.4
3)	Stocker	30-45	1.0-1.8

- 1) Blend of fast and slow digesting grain types
- 2) 5-15% dietary roughage
- 3) Processing is recommended when corn is expensive
- 4) Corn can be fed whole
- 5) Small grains need to be processed
- 6) Co-product feeds

-hominy, potato products, distillers grains, brewers grains, food processing waste, out-of-condition human foodstuffs

Roughage in feedlot rations

- Used as a management tool to keep cattle on feed
- An expensive ingredient in the diet
 - Bulky
 - Low energy
 - Logistics of getting it into the ration
 - Expensive

Effects of corn silage level on profitability

	Corn silage level, % DM						
	15 ^a	30 ^a	45 ^a	55 ^a	30 ^b		
Corn, % DM	40	25	10	0	0		
ADG, lb	3.30	3.20	3.07	2.88	2.96		
Feed/gain	6.61	6.70	6.96	7.16	6.89		
Return to management, \$/hd							
46.16 49.33 56.92 108.72							
^a Rations contained 40% distiller's grain with soluble (DMB) ^b Ration contained 65% distiller's grain with soluble (DMB)							

^cAll rations contained 5% supplement

^dLinear relationship (P<.01) for ADG and feed/gain

^eMeans from Nebraska study 2013 adjusted to a base of the standard animal- 3.3 lb

ADG and 6.61 feed/gain ratio

Performance summary of cattle fed different grain sources

	ADG, Ib	DMI, Ib/d	Feed/Gain
Barley	3.26 ^c	20.2 ^{bc}	6.22 ^a
Corn	3.12 ^b	20.0 ^b	6.45 ^{ab}
Milo	3.04 ^a	21.0 ^c	6.95°
Oats	3.30 ^{abc}	20.1 ^{ab}	6.12 ^a
Wheat	2.95 ^a	18.8ª	6.39 ^{ab}
abc/P < 05			Owons 1998

(P<.U3)

Owens, 1993

Grains

Faster

Wheat Barley Rolled high moisture corn Steam flaked corn High moisture wholeshelled corn

Slower

Dry cracked corn Reconstituted milo Steam flaked milo Dry shelled corn Dry rolled milo Ground corn

Effects of corn particle size on steer performance

	Whole	Cracked	Fine Ground	50:50 Whole: Cracked	50:50 Whole: Fine Ground
ADG, lb	2.75	2.97	2.96	3.06*	3.06*
DMI, Ib/d	16.2	17.3	17.1	16.5	17.3
Feed/Gain	5.89	5.82	5.89	5.40*	5.70*

Nebraska, 1987

* P<.05

EFFECT OF WHOLE AND DRY CORN ON CATTLE PERFORMANCE

	Whole	Whole and dry rolled	Dry rolled
ADG, lb/d	3.01 ^a	3.08 ^a	2.92 ^b
DMI, Ib/d	18.0	17.9	17.5
Feed/gain	6.03 ^b	5.86 ^a	5.99 ^b

^{ab}(P<.05)

Colorado

Two trial summary of benefit of blending grains

Blend	Benefit, \$/hd
50% whole:50% cracked	65.76
50% whole:50% fine	35.33
50% whole:50% rolled	20.53
Average	40.54

Disadvantages/challenges of earlage

- Requires 50% more storage
- Requires additional equipment (snapper head for chopper)
- Limited marketability in commercial markets
- Harvest moisture level window is narrow (35-40%)
- Proper ensilement is critical
 - ¹/₂ inch cut
 - Proper packing
 - Oxygen exclusion

Beef produced per acre with different forms of corn

	Dry	High moisture	Corn/cob meal	Earlage	Earlage
DM yield, lb/ac	7571 ¹	8123 (+7.3%)	9180 (+13)	9749 (+22.5)	9749 (+22.5)
NE _g of feed, Mcal/lb ²	.70	.71	.62	.52	.57 (Rust estimate)
NE _g , Mcal/acre	5300	5768	5691	5069	5557
$NE_g,Mcal/hd/d^3$	12.7	12.7	12.7	12.7	12.7
Steer-days	418	455	449	408	447
Beef produced, lb/acre	1253	1363	1346	1223	1341

¹Assumed 160 bu/acre; ²NRC, 1984 and Preston, 2010; ³ 770 lb steer gaining 3.1lb/d

Crude protein requirements

- A. Dietary levels
 - 1) Feedlot 11.5 to 13%
 - 2) Receiving 12 to 14%
- **B.** Effects of weight and rate of gain on protein requirements

Weight, lb	Protein, %	ADG, lb	Protein, %	
300	15.0	1.0	9.5	
500	13.5	2.0	11.4	
700	12.0	3.0	13.5	
900	10.5			
1100	10.5			
1300	10.5			

Crude protein requirements

- **C. Non-protein nitrogen usage-Urea**
- 1) Can supply most of supplemental protein up to 12% CP in the diet
- 2) BCRTC ½ of supplement from urea and ½ from SBM
 - 3) Can be added up to 1% of diet DM
- **D. Bypass or escape protein**

- 1) IUP levels, more concerned with untraditional feedstuffs
 - -feather meal, heat-treated SBM, blood meal, meat and bone meal,
- 2) DIP levels, need to supply sufficient ruminally available nitrogen to optimize microbial efficiency
 -NPN, SBM, CSM

Mineral and vitamin nutrition for cattle

Formulate to meet NRC guidelines

Feeding systems for Holstein steers

- High Plains system
 - 250-350 lb steers are fed a single diet until harvest (85-92% concentrate)
- Two-phase feeding program
 - Common amongst farmer-feeders
 - Feed high roughage diets from 350-700 lb
 - 40-60% corn silage
 - 30-50% hay/haylage
 - Pasture
 - Finish on a 70-90% concentrate diet

Feeding systems for Holstein steers

- Steer stuffer/self-feeder
 - Feed whole corn and pellets
 - Fill feeders once or twice a week
 - More diligent in health check
 - Approximately 30-40% of pens develop "stall out"
 - Tends to work better with shorter feeding periods
 - Lighter harvest weights
 - Heavier in-weights

The optimum system depend on feed availability and prices

Advantages of various feeding systems

High Plains	Two-phase	Steer stuffer
Most predictable	Utilize more roughage	Best feed conversion efficiency
Better health management	More beef produced /acre	Less labor
	Less metabolic problems	Less manure

Design a feeding program that fits your labor, land, facility and equipment resources

Whole corn and pellet program vs a more conventional finish ration

	ADG, lb		Feed	/gain
Trial	Hay, 2 lb/hd/d	No roughage	Hay, 2 lb/ hd/d	No roughage
1	2.47	2.02	6.93	7.21
2	3.08	2.57	5.95	5.86
3	3.54	3.17	6.30	5.93
4	2.32	2.02	7.91	7.79
5	2.57	2.54	8.98	8.43
6	3.21	2.98	6.51	6.13
7	4.11	3.58	6.17	6.09
Average	$3.04 \pm .64$	2.70±.58 (12.5%)	6.96±1.1	6.77±1.0 (3.0%)

ADM Alliance Nutrition

Effects of placement of fleshy calves on pasture

	1100 lb harvest wt	1200 lb harvest wt	1100 lb harvest wt	1200 lb harvest wt	Prob. _{trt}	Prob. _{end}
Grazing, # days	0	0	149	149		
ADG, lb			3.	36		
		Perform	mance in fee	edyard		
DOF	236	278	158	200		
ADG, lb	2.88	2.73	2.79	2.53	.09	.002
DMI, lb/d	16.9	16.8	20.6	20.9	.73	.17
Feed/gain	5.85	6.17	7.80	8.26	.33	.0001
Ribeye area, in ²	10.4	11.2	10.8	10.5	.36	.48
Quality grade	11.5	11.8	11.7	12.2	.45	.39
Calc. YG	2.5	2.3	2.6	2.6	.63	.001

Feeding heavy Holstein steers

Effects of initial weight on feed conversion efficiency

Effects of initial weight on daily weight gain (lb)

72 Holstein steers Light- 71% Choice with a 11.6 in² ribeye area Heavy- 77% Choice with a 12.5 in² ribeye area

Co-product feeds commonly fed in Michigan feedlots

- Animal fat
- Bakery waste
- Beet pulp
- Brewers grains
- Carrots
- Corn gluten feed
- Distiller's grain
- Hominy feed
- Husklage
- Potato co-products
- Sweet corn waste
- Wheat co-products
- Whey

Expected Change in ADG

Expected Change in DM Intake

Expected Change in Feed Efficiency

Feeding recommendations for distiller's grain with soluble

- Protein source (1-3 lb/d)
- Energy source (4-9 lb/d)
- Mineral balance (Ca:P),
 - Add limestone
 - Ca:P>1.1
- Does not replace all roughage sources
- Monitor S content of DGS

•Maximum allowable level = .4%

•Feeding 40 % DGS that has 1% S is risky!!!!

- Polioencephalomalacia (thiamine deficiency)
- Sulfur toxicity

6-15%

20-40%(maybe more)

Feeding recommendations for distiller's grain with soluble

- Can be high in other macro- and microminerals (K, Na, Se, etc.)
- Prefer wet over dry DGS
- Value relative to corn (DM basis)
 - Wet 110-120%
 - **Dry** 100%
- Adjust nutrient management plans
 - **P**
 - Potential runoff

Meta-analysis of feeding distiller's grain with soluble diets

	Control	30% DDGS	30% WDGS	30% MDGS	30% MDGS		
No. pens		66	350	85	85		
DGS, \$/ton as-is		250	74	125	92		
Price relative to corn, %		90	80	80	60		
ADG, lb	3.30	3.67	3.69	3.68	3.68		
Feed/gain	6.61	6.39	5.96	6.23	6.23		
Return to management, \$/hd							
		70.99	109.70	137.19	150.56		

Comparison of low-fat versus full-fat distiller's grain

					Diet				
			DGS	DG	fat,				
			,%	S	%	Wt.			
		Pens	of	fat,	diet	gain,	ADG	DMI, lb/d	
Location/year	#/trt	/trt	diet	%	DM	lb	, lb		Feed/gain
-			DM	DM					_
Kansas, 2008	203	8	0	0	3.8	302	2.55	20.1	7.87
Kansas, 2008	203	8	13	4	3.9	288	2.44	19.7	8.06
Kansas, 2008	204	8	13	12	4.8	307	2.60	20.6	7.94
Nebraska, 2011	24	4	0	0	3.6	406	3.41	24.4	7.19
Nebraska, 2011	24	4	35	6.7	4.7	408	3.41	24.4	7.19
Nebraska, 2011	24	4	35	12.9	6.9	445	3.71	24.4	6.58
Minnesota, 2011	16	16	0	0	3.6	515	4.37	22.7	5.27
Minnesota, 2011	16	16	35	5.1	3.5	498	4.22	21.5	5.11
Minnesota, 2011	16	16	35	10.9	6.0	517	4.38	22.4	5.13
Nebraska, 2013	45	5	0	0	4.4	586	3.28	20.8	6.36
Nebraska, 2013	45	5	40	9.2	6.1	646	3.61	20.5	5.69
Nebraska, 2013	45	5	40	11.8	7.2	657	3.67	20.8	5.67
Pai	r-wise t	est of di	ifferenc	e from	contro	ol (ratio	on with	out DGS)	
De-fatted							.02	48	16
Observed significance level							.19	.05	34
							.04	.10	.30

Comparison of low-fat versus full-fat distiller's grain

Meta-analysis of studies comparing high levels of distiller's grain with soluble to conventional feedlot diets

- Number of studies
 - With corn =9
 - Without corn =5
- All studies fed 100-200 mg thiamine/hd/d
- Conventional diets had at least 80% corn
- DGS diets- 47-85
 - With corn = 47-78
 - Without corn = 48-85

Predicted values from meta-analysis of feeding higher levels of distiller's grain with soluble (difference from conventional diet)

	ADG, Ib	DMI, Ib/d	F/G	HCwt, Ib	Bfat, in.	Marbling	Choice, %	YG
50	.07	-1.19	-0.03	.0	01	-14.6	-9.0	.0
55	18	-1.41	05	-3.9	.00	-11.0	-9.2	.0
60	33	-1.76	.13	-10.9	.00	-12.3	-9.5	.1
65	38	-2.04	.18	-15.3	.00	-18.6	-9.7	.1
70	33	-2.23	.08	-16.9	01	-29.8	-9.9	.1
75	17	-2.34	15	-15.9	02	-46.0	-10.1	.1
80	09	-2.36	51	-12.1	04	-67.1	-10.4	.0
Mean ¹	3.57	22.4	6.36	778	.48	522	78	3.0
Prob _L	.14	.27	.96	.99	.71	.16	.94	.43
Prob _Q	.14					.12		

¹Control mean of all studies

Predicted values from meta-analysis of feeding higher levels of distiller's grain with soluble without corn in the diet (difference from conventional diet)

	ADG, lb	DMI, Ib	F/G	HCwt, Ib	Bfat, in.	Marbling	YG
50	83	56	2.50	-55.4	07	-73.4	54
55	53	15	1.67	-33.1	01	-57.0	20
60	33	12	1.00	-17.2	.04	-46.2	.06
65	23	44	.49	-5.5	.08	-41.0	.25
70	23	-1.14	.16	2.0	.09	-41.5	.38
75	33	-2.19	01	5.2	.09	-47.5	.42
80	53	-3.61	02	4.1	.08	-59.2	.40
Mean ¹	3.59	22.7	6.33	818	.47	538	3
Prob _∟	.20	.33	.12	.10	.14	.92	.05
Prob _Q	.19	.27	.16	.13	.16		.06

Control mean of all studies

²Percent choice went from 80.3 % to 22.2% in two trials that fed 60% DGS

Facilities at Opportunity Farms, Lennox South Dakota

Opportunity Farms in Lennox, South Dakota 2012

- Three types of facilities
 - Open lot with mounds; 275 ft²/hd
 - Partially covered open lots with mounds(covered feed alley, feedbunk,water and 20 feet of pen); 235 ft²/hd
 - Confinement (monoslope); 45 ft²/hd
- 80 head per pen; 4 pens/facility type

Facility effects on performance and non-feed costs

Opportunity Farms, Lennox, South Dakota 2012

Effect of housing type on feed conversion efficiency

Estimated costs for new facilities

Open lot with mounds \$200-300/hd

Flat floor confinement

\$500-600/hd

Deep pit (slotted floor)

\$1000-1200/hd

Summary of monetary benefits from improved management

	Added be	nefit, \$/hd
	Moderate implant	Aggressive implant
Implant	21.65	83.54
Reimplant	12.77	75.61
Beta-agonist	25.49	25.49
Lower health cost by 10%	9.72	9.72
Blend grains in ration	40.52	40.52
Increase corn silage in the ration by 15% when feeding 40% DGS	46.16	46.16
Add DDGS to ration	<u>70.99</u>	<u>70.99</u>
Total benefit	227.30 (205.65)	352.03 (268.49)

Numbers in parentheses represent the total benefit without the value from initial implant

Comments from a feedlot manager in MI

- Calves raised by third party for 14 weeks
- Receive a Synovex S implant at 15 weeks
- Receive an Encore implant ~ 500 lb
- Put on Pulmotil on week 15 for 14 days
 - Reduced health costs by 70%
 - \$8-10/hd
- On full feed of finish ration by 16 weeks (400-425 lb)

Comments from a feedlot manager in MI

- Finish ration-
 - Recent past- 42% corn screenings, 42% corn, 12% pressed beet pulp, 3-4% supplement
 - Current- 72% corn, 20% DGS, 5% straw, 3-4% supplement
- Feeding Zilmax
- Clean up cost- \$1.00/cwt

Thank You

Questions?

Comments from a marketing agent in MI- August 2, 2013

- Holstein steer markets
 - JBS- Plainwell, MI
 - Tyson, Joslin, IL
 - Green Bay Dressed Beef- Green Bay, WI
- Basis in contracts- (five area price)
 - Calf-feds- \$6-7/cwt
 - Yearling- \$8-9/cwt
- Clean up cost- \$2-3/cwt (discounts for outs, primarily muscle score and age)

Comments from a marketing agent in MI- August 2, 2013

- Green Bay Dressed Beef
 - Fewer discounts- generally for bulls and stags only
- JBS-\$15/cwt discount for carcasses < 700 and > 1000 lb

Muscle Score 1	Muscle Score 2	Muscle Score 3	Muscle Score 4					
\geq 12.5 in ² ribeye area	11.6-12.4 in ² ribeye	10.4-11.5 in ²	9.1-10.3 in ² ribeye					
	area	ribeye area	area					
		Poor round conformation, shallow loin,shallow ribeye, ribeye too small for carcass size	Very poor round confirmation, sunken loin, triangular or very small ribeye					
	J	BS						
0	0	-\$5/cwt	-\$10/cwt					
Tyson??? (unverified)								
+\$4/cwt	-\$1/cwt	-\$4/cwt	-\$8/cwt					
0	0	0	-\$4/cwt					

Corn silage in Holstein steer diets (430 - 1100 lb)

<u>Corn:Corn silage</u>	<u>60:40</u>	<u>75:25</u>	<u>90:10</u>
Days on feed	229	202	194
DM intake, lb/d	16.2	16.5	16.6
Daily gain, lb/d	2.95 ^a	3.25 ^b	3.5 ^c
DM feed/gain	5.9 ^a	5.4 ^{a,b}	5.2 ^b

Alfalfa haylage fed from 430-500 lb; corn silage fed from 500-1100 lb ^{a,b,c} P<0.05

Schaefer, U of WI

Seventeen trial summary of the effects of corn silage levels on cattle performance

Corn silage level, % DM

	10	20	30	40	50	60	70	80
ADG, Ib ^a	2.52	2.49	2.43	2.36	2.28	2.17	2.05	1.91
DMI, Ib/d	15.3	15.7	16	16.1	16.2	16	15.6	15.1
Feed/Gain	6.06	6.32	6.58	6.84	7.1	7.36	7.62	7.88

^aAverage initial weight 512 lb

Minnesota, 1974

How are Holsteins different than native steers

Calf-fed are more efficient and yearlings less efficient

- More gut mass and higher maintenance requirement
- Older yearling steers can be very inefficient especially with whole corn diets

Less muscle

- Smaller ribeyes
- More elongated shape

Less carcass fat

- More internal fat
 - Marble better
 - KPH
- Less backfat
- More predictable performance
- Highly variable basis (cash-futures)

Marketing

- Two major challenges
 - Basis- difference between cash and futures
 - Challenging for risk management
 - Discounts
 - Ribeye size, carcass weight, age, etc.

Forage

- When 0-2 lb of long hay is fed, cattle will crave fenceposts and boards
- Small amounts of long forage are able to stimulate cud-chewing, which is good
- Fresh bedding, like straw, will be consumed as a forage source; fresh bedding can decrease grain consumption

Schaefer, U of WI