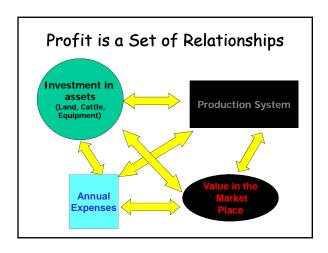
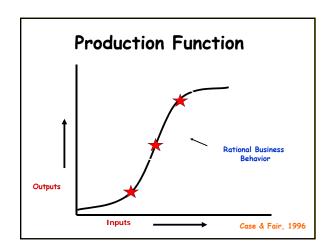


Summary of Dunn's 2000 Thesis Work (n=148 operations)

What are the Characteristics of High Profit Producers?


- 1. Longe operators
- 2. Ola 1
- 3. Inher J wealth
- 4. Oper on Federal land
- 5. Ret in on ership
- 6. Cperated in the western rangelands


Summary

- When compared to Low and/or Medium, High profit enterprises have:
 - Higher weaning %
 - No differences in:
 - · Weaning weight
 - · Death loss
 - · Pregnancy %
 - · Replacement rate
 - · Calving distribution
 - No differences in size of operation or region.

Summary

- · High profit enterprises have:
 - Lower Investment
 - Lower Total costs
 - · Lower Vet Medicine
 - · Lower Depreciation
 - · Lower Inventory Adjustments
 - Lower Breakeven (UCOP)
 - Greater Revenue
 - Greater Net Income
 - Higher Return on Investment

Fitting genetics to your environment

NO SINGLE BREED EXCELS IN ALL THE TRAITS IMPORTANT TO BEEF PRODUCTION

LARGE BREED DIFFERENCES EXIST FOR:

- · GROWTH RATE AND SIZE
- · COMPOSITION OF GAIN
- · CALVING DIFFICULTY
- · MILK PRODUCTION
- · AGE AT PUBERTY

BREED DIFFERENCES (COMPLEMENTARITY) are an important genetic resource Nehasia

What drives cow costs?

- Feed accounts for 50-65% of nonfixed cow costs
- · Feed costs are driven by:
 - Mature weight
 - Milk production

30.0	E	ffect	of Cow	Body Size	9	
120000000000000000000000000000000000000					400 lb Cow	
27.0					200 lb Cow	
24.0						
21.0		_				
27.0 24.0 21.0						1
			\			

Relationship Between Cow Size and Milk Production Cow Milking lb of milk/ Ib TDN Ib CP Needed Needed Size Level cow/day 1000 Average 10 12.4 1.9 1000 Above Avg 20 14.8 2.6 1000 Superior 17.2 30 3.5 1200 Average 10 13.8 2.1 1200 Above Avg 20 16.2 2.8 1200 Superior 30 18.7 3.5 1400 Average 10 15.2 2.3 1400 Above Avg 20 17.6 3.0 1400 Superior 20.1 3.7

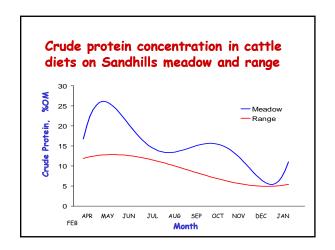
Why do cows with greater milk potential have greater nutrient requirements?

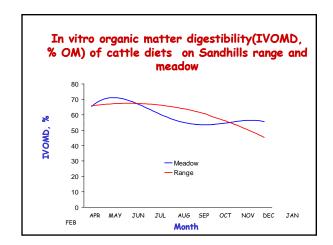
- · Cows with greater milk production:
 - A greater percent of their body weight is:
 - · Heart
 - · Lungs
 - · Liver
 - · Spleen

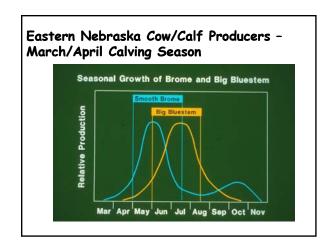
Critical Trade-off's when determining breeds that "fit"

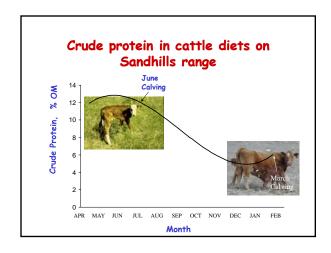
of Beef Cattle, 1984 & 1996

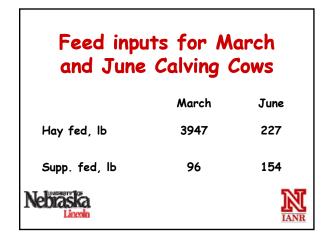
- Leanness vs fleshing ability
- Growth vs calving ease
- · Growth vs age at puberty
- · Growth vs mature size

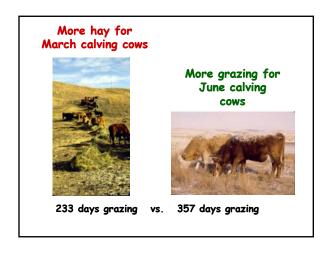


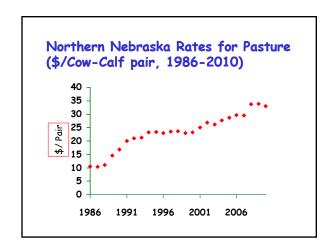

· Frame vs function

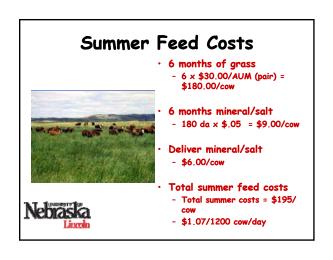

What can cow/calf producers do?

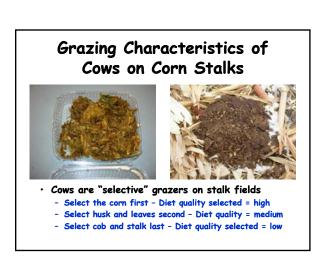

- · Avoid extremes in size and milk
 - Will result in less growth and carcass weight
- · Cull infertile cows non-pregnant
- Adjust calving and weaning dates to manage cow body condition
- \cdot Use cow maintenance EPD as part of selection
- Source seedstock producers that have developed selection indexes that include residual feed intake
- Stayability in commercial c/c highly related to profit potential











Calculating the value of a nutrient in a feed:

Calculation:

\$/Ib of feed

Cost per unit of nutrient =

% of available nutrient (as a decimal)

· Assumes:

- ·All feeds have equal moisture content
- ·Doesn't consider labor to deliver the feed
- ·Assumes all feeds have similar utilization

Cost per pound of protein

Feed	Cost per ton \$/ton	Cost per pound of protein, \$/lb
20% Crude protein cake	\$125/ton	\$0.313/lb of protein
36% Crude protein cake	\$220/ton	\$0.305/lb of protein
18% Alfalfa	\$65/ton	\$0.181/lb of protein

Calculating the value of a nutrient in a feed if moisture contents are different:

Feeds:

- ·Silage @ \$25/ton, 70% TDN, 35% DM
- ·Whole corn @ \$72/ton, 90% TDN, 90% DM
- ·Calculations to determine cost per lb of energy (TDN)
 - ·Silage
 - •\$25/ton ÷ ((2000lb × .35) × .70) =\$.051/lb of TDN
 - ·Corn
 - $*$72/ton \div ((2000lb \times .90) \times .90) = $.044/lb of TDN$

Quality of Forages Vary

- · Test forages:
 - Moisture
 - % Crude Protein
 - Energy
 - . TON
 - Summer Annuals
 - · Nitrates
- Not all forages are average quality

Forage Feeding Systems

Forage Feeding Systems

Value of Feeding Losses in a Season per 20 Cow Feeder

Hay Value, \$/ton

eeding Waste, %

	\$70	\$80	\$90	\$100	\$110
0%	\$0	\$0	\$0	\$0	\$0
5%	\$200	\$229	\$257	\$286	\$314
10%	\$400	\$457	\$515	\$572	\$629
15%	\$600	\$686	\$772	\$858	\$943
20%	\$800	\$915	\$1,029	\$1,144	\$1,258
25%	\$1,001	\$1,144	\$1,286	\$1,429	\$1,572

Distillers Grains (Nutrients are 3X of corn)

- ⇒ 30% CP(65% UIP), .8% P, 11% fat, 40% NDF
- → High fiber energy source with high digestibility
- ⇒ Energy content 125% (wet or dry) of corn
- ⇒ Fat content may limit amount used in diet
- → Sulfur content: .45% 1.7% variable

Calving Time In Nebraska

- 83% cows calve in the spring
 - Feb, Mar, April, May
- · 17% calve some other time
 - Summer
 - Fall

Survey data by Dr. Dick Clark

Profitable cow/calf producers:

- Will balance biological and economical efficiency
- Maximize grazing opportunities
- Minimize the use of harvested forages
- Reduce off-the-farm purchases

