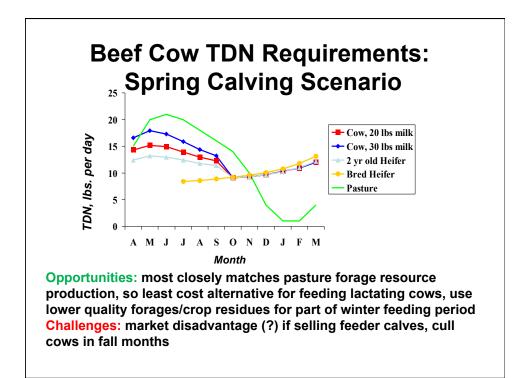
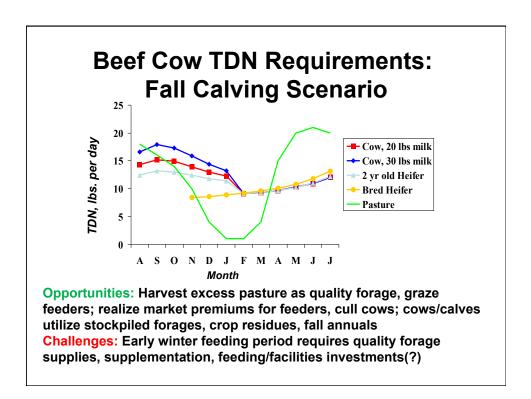
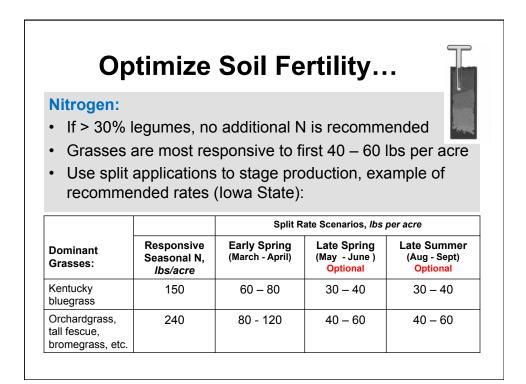



Habit 1: Pasture Budgeting Goals


- What production do you need from your pastures?
- When do you expect to get it (seasonal aspects)?
- · How do you plan to deal with forage deficits?
- · How do you plan to deal with surplus forage production?


• UW Extension Pasture Budgeting Spreadsheet: http://www.uwex.edu/ces/forage/pubs/PASTURE_NEEDS.XLS

Run the numbers to prevent overstocking and assist with budgeting your forage resources

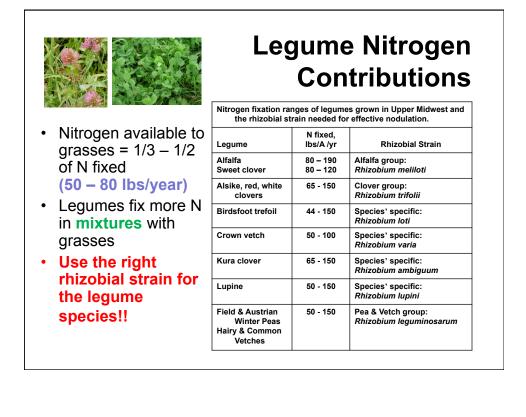


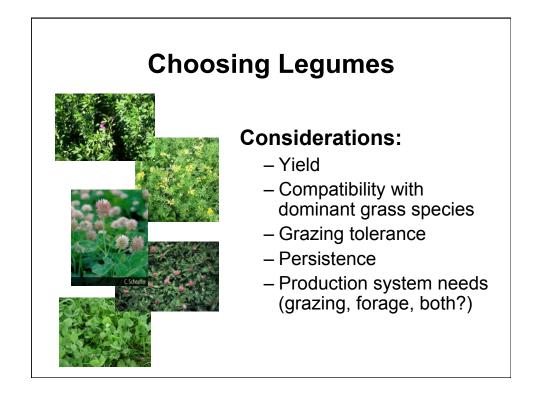
Stage/days	Demand Level	Nutrient Demands for:	Goals
1 & 2 (0 – 90 days)	Very High	Calving; early lactation; estrus/ breeding; growth (heifers)	BCS 5-6 at calving; cycles and breeds within 90 days
3 (90 – 180 days)	Moderate	Lactation; 1st trimester fetus; growth (heifers)	Maintain milk supply for calf; begin to replace body condition lost in Stage 1
4 (180 – 270 days)	Low	Late lactation; weaning; 2nd trimester fetus; growth (heifers)	Improve BCS to 5-6; utilize least cost feeds/forages
5 (270 – 365 days)	Moderately High	Dry, but preparing for next lactation; 3rd trimester fetus undergoes rapid growth; growth (heifers)	At least BCS 5-6 at calving; calve as close to 365 days as possible

Habit 3: Go for Legumes

Legumes have important roles in pasture systems:

- · Source of high quality feed
- Nitrogen fixation capacity
- Help "smooth out" seasonal pasture production curves
- · Species diversity


And...legumes can be a challenge to establish and maintain in pasture systems!


Kura clover

Rhizobium nodule on soybean (photo by Jennifer Dean)

	Prod	uctior _{kers}	Contribute n and Quality Crossbred beef stockers 2010-2011, Arlington		
Treatment	ADG, Ibs/day	Gain/acre, Ibs	Treatment	ADG, Ibs/day	Gain/acre
Kura clover +	2.66	909	Tall Fescue + N	1.55	648 ^b
grass Red clover +	2.18**	713**	Tall Fescue + Clover	2.02	740 ^a
grass	°P < 0.01		Meadow Fescue + N	1.86	628 ^b
			Meadow Fescue + Clover	2.24	779ª
			SEM	0.04	26

Habit 4: Increase Pasture Diversity

- Diversity: having several species of forage plants well represented in a pasture
- Two strategies:
 - Diversity within pastures
 - Farm diversity: mixtures may differ between pastures
- Desired outcomes:
 - More consistency in seasonal production, pasture quality
 - Increase management flexibility of grazing system
 - Dense swards
 - Fewer weeds

Habit 4: Increase Pasture Diversity

- Goal: at least two functional groups represented by 3 4 compatible species:
 - Cool season grasses
 - Warm season grasses
 - Legumes
 - Palatable forbs (examples: chicory, dandelions, etc.)
 - Annuals

Compatibility criteria to consider:

- Adapted to site conditions (fertility, drainage, etc.)
- Growth habits
- Grazing tolerance
- Winter hardiness
- Palatability
- Seedling vigor/ease of establishment
- Mechanical harvest suitability

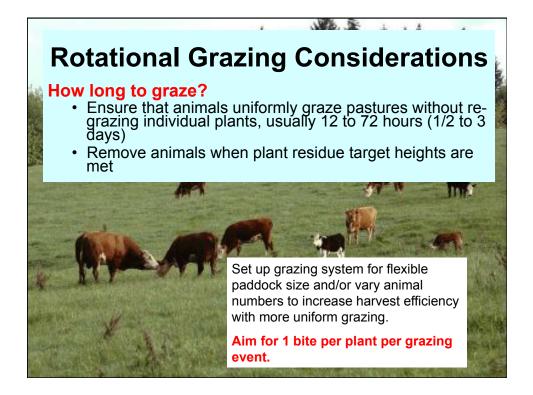
Example: Grazing Tolerance

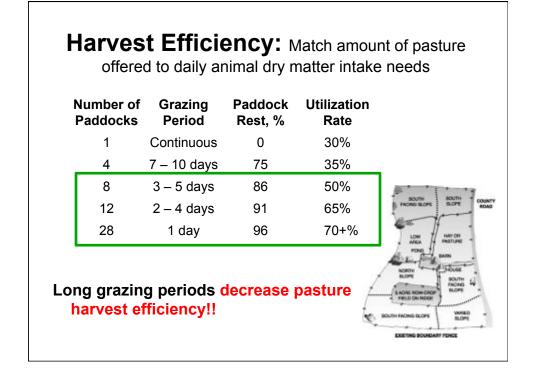
Excellent:

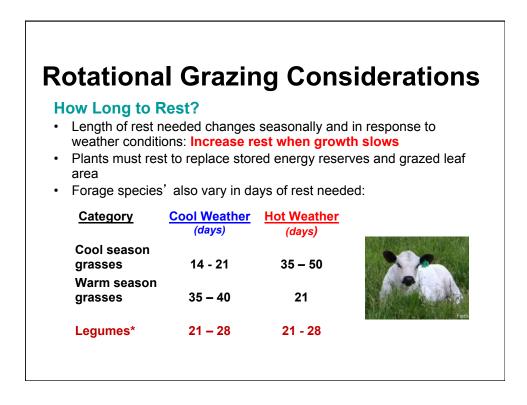
- Kentucky bluegrass
- Ryegrasses
- Kura clover
- White clover

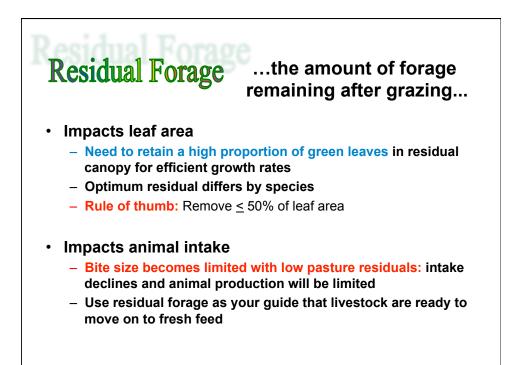
Fair:

- Meadow bromegrass
- Smooth bromegrass
- Timothy

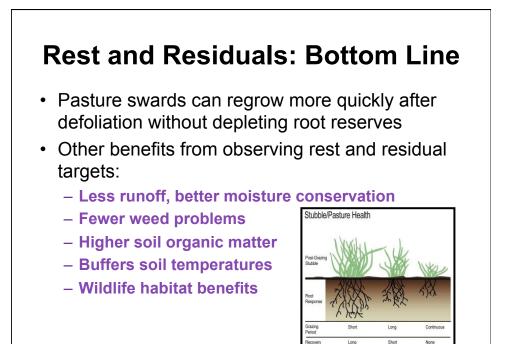

Good:

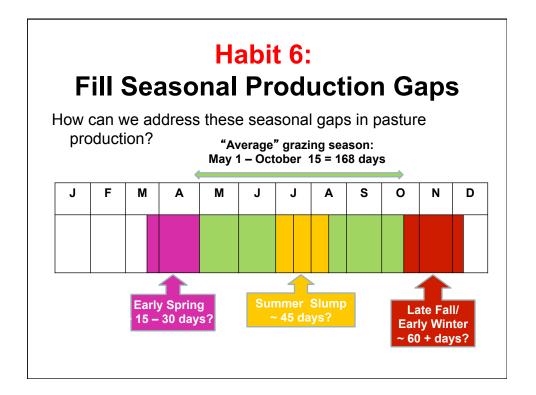

- Festulolium
- Meadow fescue
- Orchardgrass
- Reed canarygrass
- Tall fescue
- Alfalfa
- Birdsfoot trefoil
- Red clover
- Alsike clover

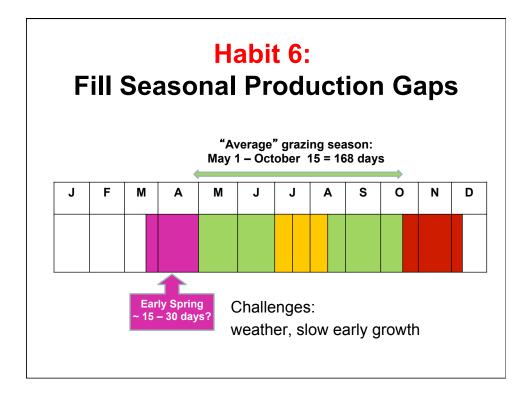


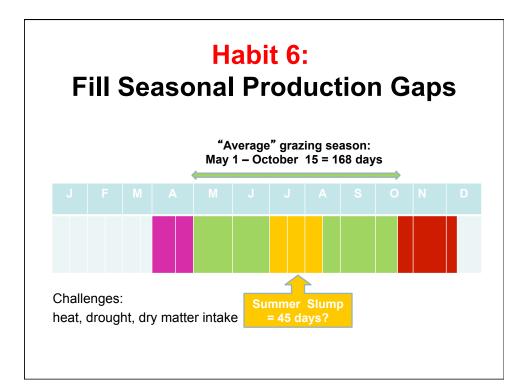


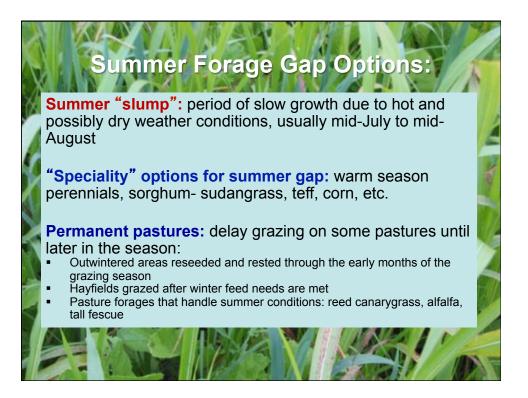
Rotational Grazing Co	onside	rations
 When is the paddock "ready" to be Enough forage is available to satis intake needs for grazing period Plant is physiologically capable of defoliation 	grazed? fy animals	s' dry matter
	100	AN ALIGHT
Plant H	leight (incl	nes)
Grass Species	Spring	Summer/Fall
Orchardgrass, smooth bromegrass, tall fescue, timothy, reed canarygrass	10 - 12	10 +
Perennial ryegrass, Kentucky bluegrass	6	6+
NO STORE STATISTICS		ALL ALL

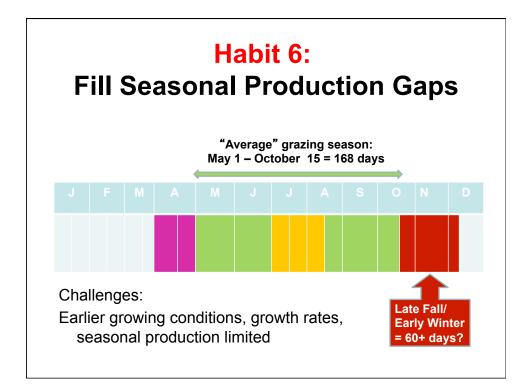


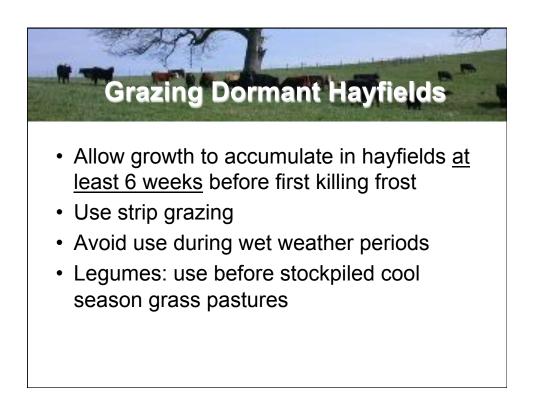


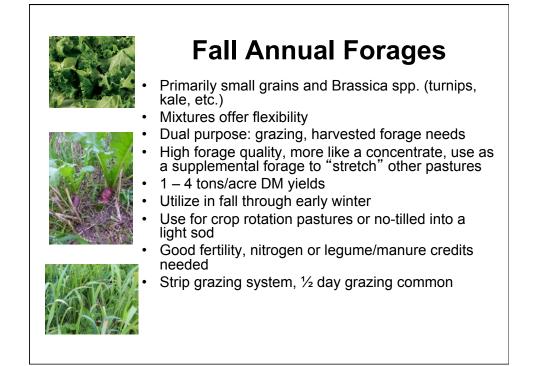


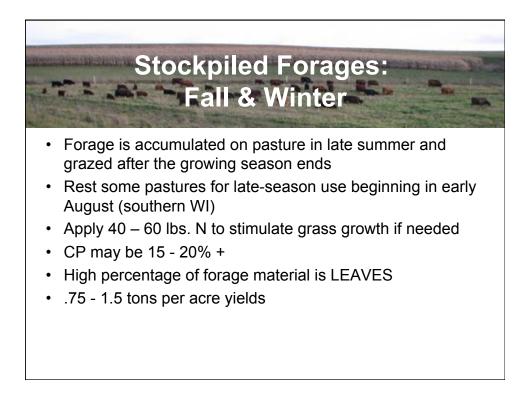

	Eff		idual I on Fut		irowth
			Ave. yield per rotation	Annual yield per acre	
			pounds	per acre	
6	6	24	750	4500	April 28
3	6	32	900	5400	May 4
1.5	4	44	1250	5000	May 11

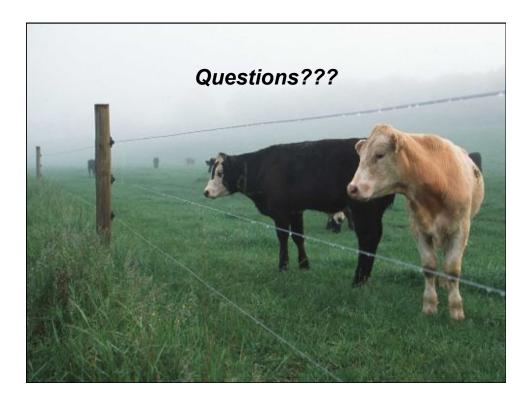











Cor	n Sta	lk Re	sidues:	Carlor A	N.
 Usually worth 45 Cattle consume 3 lbs/ac) 	30 – 40%	corn stalk	,		
 Select most pala Make a protein s Strip or rotational 	upplemer	nt available	• · ·	SI	
 Make a protein s 	upplemer	nt available	• · ·	SI Parts Cob	
 Make a protein s 	upplemer Il grazing I	nt available recommen	ded		
 Make a protein s Strip or rotationa 	supplemer Il grazing I Husk	nt available recommen Leaf	ded Plant stem ^a	Parts Cob	
 Make a protein s Strip or rotationa % of residue DM 	upplemer Il grazing I Husk 12	nt available recommen Leaf 27	ded Plant stem ^a 49	Parts Cob	

			rage ury matter	r per day f
Dasture, sa	vings are per c SAVINGS,	ow in herd	equivalent, pri	ce per ton
grazed	\$125	\$150	\$200	\$250
60	94	112	150	188
90	141	169	225	282
120	188	225	300	375
150	234	282	375	469
400	282	338	450	562
180		394	525	656
210	328	594		

WI Production Costs per Cow for MiG and non-MiG Beef Farms

	MiG Beef	Non-MiG Beef	Percent MiG
Cost Category	Farms	Farms	Non-MiG
Hired labor	\$258	\$352	0.73
Feed cost	\$144	\$193	0.75
Equipment rent	¢75	\$118	0.64
COSTS reduced	l by <u>></u> 15% i	n EVERY CAT	EGORY!!
Chemical cost	\$78	\$98	0.80
Land & facilities rent	\$190	\$231	0.82
Depreciation	\$207	\$264	0.78
Fuel cost	\$73	\$88	0.83
Repairs cost	\$110	\$130	0.85
Fertilizer cost	\$130	\$171	0.76
Utilities cost	\$40	\$51	0.78
Total	\$1359	\$1776	0.77

Source: 2007 US Ag Census

