What is the best fit for your soil resources?

Joe Sellers Brian Peterson

IOWA STATE UNIVERSITY Extension and Outreach

Midwest farms have combined pasture and row crops

IOWA STATE UNIVERSITY
Extension and Outreach

IBC Iowa Beef Center

Where has all the pasture gone?

IOWA STATE UNIVERSITY
Extension and Outreach

Acres of cropland pasture

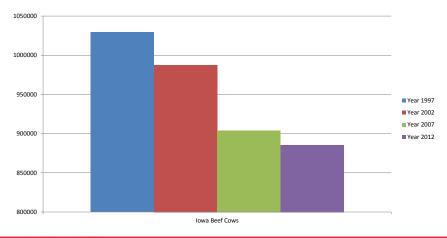
1997 2012

• lowa 2001198 223963

- Reduced 88%

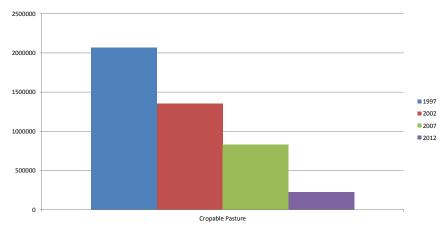
• Missouri 5247558 567132

- Reduced 89%


Nebraska 1840068 322093

- Reduced 75%

lowa Beef Cow Herd


(Number of Cows, USDA Census)

IOWA STATE UNIVERSITY
Extension and Outreach

Decline in cropable pasture (Acres, Census of Agriculture)

What did those lost acres mean in cow numbers?

- Change in beef cow inventory 1997-2012
- lowa reduced 13.9 %
- Missouri reduced 20.2%
- Nebraska reduced 13.6%

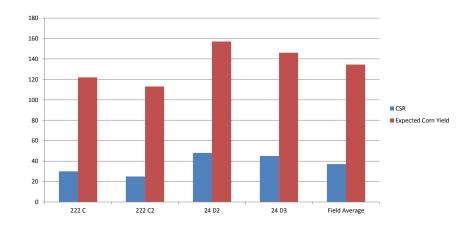
IOWA STATE UNIVERSITY
Extension and Outreach

What has happened since 2012?

- Beef Cow Inventory January 2012 vs 2015
- Iowa increase + 3.7%
- Nebraska +3.1%
- Missouri +10.5%

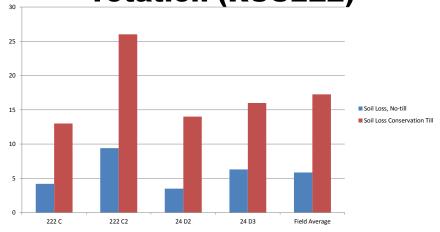
Forage on the side hills, crops on the ridge

IOWA STATE UNIVERSITY Extension and Outreach

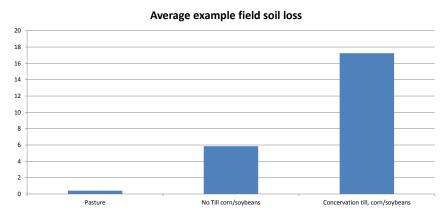


Why so much less grass?

- Corn and soybean price explosion
- USDA commodity programs and insurance subsidies favor row crops
- Aging farmer base
- Capital requirements, price volatility
- Larger farm equipment large fields


Corn and soybeans rotation is not best use of some marginal soils (lowa CSR2)

IOWA STATE UNIVERSITY Extension and Outreach



Soil loss – corn/soybean rotation (RUSLE2)

Nothing compares to well managed pasture (RUSLE2)

IOWA STATE UNIVERSITY Extension and Outreach

Land Use Analyzer

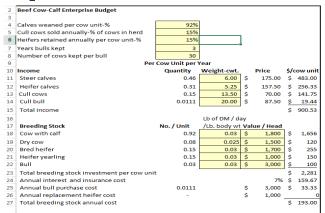
How does it work?

Instructions

- 1. Enter general information about prices and acres in the Summary sheet.
- 2. Enter information about soils in the Soil Information sheet.
- 3. Enter information about proposed crop rotations in the Crops Budgets sheet.
- 4. Enter information about proposed pasture use in the Pasture Budgets sheet.
- 5. Enter information about CRP use in the CRP Budget sheet.
- 6. Enter information about livestock enterprises in the Livestock Budgets sheet.
- 7. Enter information about land conversion practices needed in the Land Conversion sheet.
- 8. Enter information about permanent conservation structures needed in the Conservation Structures sheet.
- 9. Return to the Summary sheet and enter information about alternative land uses in the Summary Comparison.

IOWA STATE UNIVERSITY Extension and Outreach

Basic price inputs

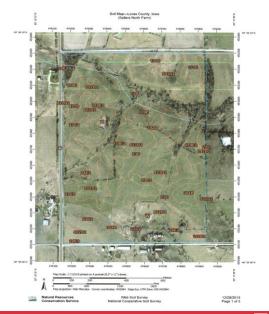

Soils information and productivity

S	oils Information									
2 Sc	oils information can be obtained from farm s	oil maps, or	from the Web 9	Soil Survey site.	http://webspilsurvey.nrcs	s.usda.gov/app/WebSoilSu	iney.aspx			
3 In	structions about how to obtain information	for your ow	n farm from the	site can be found at:	http://www.extension.ias	tate.edu/agdm/wholefarmi	html/c2-87.html			
4		Unit		Parcel 1	Parcel 2	Parcel 3	Parcel 4	Parcel 5	Parcel 6	Parcel 7
Co	ounty			Lucas	Lucas	Lucas	Lucas	Lucas	Lucas	Lucas
Sc	oil Map Series (SMS)		[23c	131c	364b	423d2	792d	822d2	993d2
SI	lope class (letter from SMS): enter A (none),	B, C, D, E, F		С	С	С	D	d	D	D
Sc	oil Series (see Web Soil Survey)		Total Acres	ARISPE	PERSHING	GRUNDY	BUCKNELL	ARMSTRONG	LAMONI	GARA-ARMSTRONG
N	umber of acres	acres	143	30	15	19	21	10	27	21
Pe	ercent slope	%		5-9%	5-9%	2-5%	9-14%	9-14%	9-14%	9-14%
1 Er	rosion class		Wtd. Average	SLI	SLI	SLI	MOD	SLI	MOD	MOD
2 T-	-factor	tons/ac/yr	3.0	3	3	3	3	3	3	3
3										
Co	orn Suitability Rating 2	CSR2	37	55	49	75	13	18	15	31
Pr	rojected corn yield with good management	bu./acre	155	188	182	194	118	129	122	143
Pr	rojected soybean yield	bu./acre	44.9	54.5	52.9	56.3	34.4	37.5	35.3	41.4
Pr	rojected oats yield	bu./acre	77.4	94	91	97	59	65	61	71
Pr	rojected alfalfa-brome yield	lbs/acre	8,656	11,333	10,222	11,778	5,778	6,667	6,444	7,55
) Pr	rojected bluegrass yield	lbs/acre	4,723	6,123	5,530	6,518	3,160	3,555	3,555	4,14
0 Pr	rojected tall grass yield	lbs/acre	7,874	10,270	9,283	10,863	5.135	5,925	5,925	6,91

IOWA STATE UNIVERSITY Extension and Outreach

Budgets for livestock, crops and pasture

Look up your farm



Sellers farm example

- The farm historically has been a mix of row crop, crop rotation and pasture
- Since 2000 100% forage
- Have used EQIP in past, currently in CSP, and have placed river bottom in WRP

Map Unit Symbol	Lucas County, lo	Acres in AOI	Percent of AOI
13B	Zook-Olmitz-Vesser complex, 0	Acres in AOI	Percent of AOI
100	to 5 percent slopes	37.6	10.0%
23C	Arispe silty clay loam, 5 to 9 percent slopes	15,3	6.5%
23C2	Arispe silty clay loam, 5 to 9 percent slopes, moderately eroded	26.4	11.2%
24E2	Shelby day loam, 14 to 18 percent slopes, moderately eroded	14.0	5.9%
1316	Pershing silt loam, 5 to 9 percent slopes	6.9	2.9%
179E	Gara loam, 14 to 18 percent alopes	6.9	2.9%
179E2	Gara clay loam, 14 to 18 percent slopes, moderately eroded	32.1	13.6%
192D2	Adair clay loam, 9 to 14 percent slopes, moderately eroded	1.0	0.4%
364B	Grundy silty clay loam, 2 to 5 percent slopes	18.9	8.0%
123D	Bucknell silty clay loam, 9 to 14 percent slopes	2.6	1,1%
423D2	Bucknell sity clay loam, 9 to 14 percent slopes, moderately eroded	15.2	6.4%
792D	Armstrong loam, 9 to 14 percent slopes	4.2	1.8%
792D2	Armstrong clay loam, 9 to 14 percent slopes, moderately eroded	6.6	2.4%
122D2	Lamoni sitty clay loam, 9 to 14 percent slopes, moderately eroded	27.3	11.6%
99302	Gara-Armstrong complex, 9 to 14 percent slopes, moderately eroded	20.8	8.8%
W	Water	1.0	0.4%
Totals for Area of Interest		235.9	100.0%

IOWA STATE UNIVERSITY Extension and Outreach

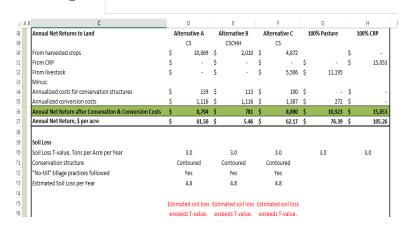
Breakdown

- 235 acres, all in pasture (north farm)
- 75 acres E and B slopes
 - Lower slopes, along streams
- 74 acres B and C slopes
 - Ridge tops, side hills
- 79 acres D slopes
 - Side hills

Soil erosion implications (Soil loss per acre, tons)

• Slope class No till Tilled

• C 4.0 11.0


• D 5.4 22

• E 9.8 27

IOWA STATE UNIVERSITY Extension and Outreach

Example output, comparisons

Do an accurate comparison

- Real world numbers
 - Don't just use the example costs use your own
 - Budgets for beef cow and row crop enterprises
 - Cost to convert back to pasture
 - Cost to continue in row crop

IOWA STATE UNIVERSITY Extension and Outreach

Whole farm return, 550 lb feeders

Feeder price	Return to land per acre			
\$170	\$67.14			
\$180	\$85.64			
\$190	\$104.13			
\$200	\$122.63			

Whole farm, corn-soybean rotation

Grain price Return to land per acre

• \$3.00 corn, \$8.00 SB \$34.89

• \$3.50 corn, \$8.50 SB \$75.05

• \$4.00 corn, \$9.25 SB \$119.44

IOWA STATE UNIVERSITY Extension and Outreach

Return per acre, D slopes, 550 lb feeders

\$170 \$33.76 \$180 \$47.45 \$190 \$61.14 \$200 \$74.82

Return per acre, D slopes, corn-soybean rotation

Grain price Return to land per acre

• \$3.00 corn, \$8.00 SB -\$19.95

• \$3.50 corn, \$8.50 SB \$18.35

• \$4.00 corn, \$9.25 SB \$58.75

IOWA STATE UNIVERSITY Extension and Outreach

What should rent be?

- 2.5 3 % of land value?
 - Low grade land SC lowa \$2750 per acre
 - \$68-82/acre
- 2015 lowa cash rent survey?
 - \$145 low 1/3 crop ground
 - \$72 improved pasture
 - \$46 unimproved pasture

Estimated Farmland Rental Rates - Iowa1

		Cropla	and		Pasture			
			Land				Land	
.,	Cash Rent,			Rent as %	Cash Rent,	Change,		Rent as %
Year	\$/acre	Percent	\$/acre	of value	\$/acre	Percent	\$/acre	of value
1994	98.60		1,517	6.5%	26.40		480	5.5%
1995	99.60	1.0%	1,581	6.3%	28.10	6.4%	450	6.2%
1996	105.00	5.4%	1,810	5.8%	28.90	2.8%	575	5.0%
1997	110.00	4.8%	1,700	6.5%	31.10	7.6%	615	5.1%
1998	113.00	2.7%	1,860	6.1%	34.00	9.3%	665	5.1%
1999	112.00	-0.9%	1,900	5.9%	31.00	-8.8%	680	4.6%
2000	115.00	2.7%	1,940	5.9%	29.00	-6.5%	700	4.1%
2001	117.00	1.7%	1,980	5.9%	30.00	3.4%	730	4.1%
2002	120.00	2.6%	2,040	5.9%	30.50	1.7%	760	4.0%
2003	122.00	1.7%	2,120	5.8%	31.00	1.6%	800	3.9%
2004	126.00	3.3%	2,310	5.5%	32.50	4.8%	880	3.7%
2005	131.00	4.0%	2,760	4.7%	36.00	10.8%	1,070	3.4%
2006	133.00	1.5%	3,100	4.3%	38.00	5.6%	1,400	2.7%
2007	150.00	12.8%	3,600	4.2%	39.00	2.6%	1,780	2.2%
2008	170.00	13.3%	4,260	4.0%	42.00	7.7%	2,070	2.0%
2009	175.00	2.9%	3,980	4.4%	43.00	2.4%	1,850	2.3%
2010	176.00	0.6%	4,450	4.0%	40.00	-7.0%	2,030	2.0%
2011	196.00	11.4%	5,600	3.5%	46.00	15.0%	2,520	1.8%
2012	235.00	19.9%	6,810	3.5%	46.00	0.0%	2,800	1.6%
2013	255.00	8.5%	8,000	3.2%	49.00	6.5%	3,220	1.5%
2014	260.00	2.0%	8,750	3.0%	50.00	2.0%	3,400	1.5%
2015	250.00	-3.8%	8,200	3.0%	50.00	0.0%	3,400	1.5%

¹Prepared from data collected by the USDA, National Agricultural Statistics Service

IOWA STATE UNIVERSITY Extension and Outreach

Obstacles to starting new pastures

- Water
 - EQIP, look at many options
- Fencing
 - Cost share, look at electric internal fencing
- · Cost of seeding establishment
 - Look at EQIP, etc

Estimated costs of pasture and hay production, A1-15

Table 1. Summa	ry of pas	ture im	provemo	ent cost	s. a/		
	Initial Cost Per Acre						
	Grass Improve- ment	Grass Seeding	Legume- Grass Mix	Inter- Seeding	Frost Seeding	Killed Sod, No-Till Renovation	
Machinery	\$18.20	\$60.30		\$28.20	\$23.00		
Lime and fertilizer	67.20	163.00		106.50	106.50		
Herbicide	13.13	0.00	0.00	6.56	9.84		
Sod suppression				6.56	0.00	0.00	
Burn-down existing sod				0.00	0.00	10.00	
Seed	0.00	28.30	60.90	35.15	42.25	48.70	
Labor	7.02	21.65	21.65	8.19	7.02	8.19	
Total Cost per Acre	\$105.55	\$273.25	\$287.85	\$191.17	\$188.61	\$201.59	
Total Cash Cost per Acre	\$88.53	\$220.90	\$235.50	\$172.98	\$168.69	\$183.40	
Expected Life in Years		10	5	5	5	7	

IOWA STATE UNIVERSITY Extension and Outreach

Estimated costs for livestock fencing – D1-75

Item	Amount	Cost per unit	Total cost
Wood posts (4-in diameter)	2	\$ 9.00	\$18.00
Fiberglass posts (3/8-in x 4 ft)	33	1.75	57.75
Insulators	2	.80	1.60
Post clips	42	.30	12.60
Polywire	1,320 ft	.03	39.60
Energizer	.25	110.00	27.50
Cut-out switch	1	7.50	7.50
Ground/lightening rods	4	16.00	64.00
Labor and equipment	2 hr	16.25	32.50
Total			\$ 261.05
Total per foot			\$ 0.20
Cost for adding 1 strand of		53.80	53.80
polywire (wire, clips, insulators)			or .04 per ft.

Item	Woven Wire	Barbed Wire	Hi Tensile Non-Electric (8-strand)	Hi Tensile Electric (5-strand)	Electrified polywire
Estimated useful life (yr)	20	20	25	25	4
Average annual maintenance (% of initial cost)	8%	8%	5%	5%	5%
Depreciation	\$ 128	\$ 97	\$ 65	\$ 47	\$ 65
Interest on investment (4%)	102	78	65	47	10
Maintenance	204	156	182	59	13
Total cost/year	\$ 434	\$ 331	\$ 214	\$ 150	\$ 88
Total cost/foot/vear	\$ 0.33	\$ 0.25	\$ 0.16	\$ 0.12	\$ 0.07

How can we maintain or increase cow numbers with less grass acres?

- Increase pasture production and utilization with better management
- Use a combination of grazing and feeding
- Use of cover crops for soil benefits, potential livestock feed
- Use of crop residues and coproducts

IOWA STATE UNIVERSITY Extension and Outreach

Improve pasture production

- · Move more often, proper rest period
- Increase utilization from 30 to 60%
- · More plant diversity
- · Maintain adequate residual grass height
- · Extending grazing season

Utilization Rates

	Full Season	Spring
Continuous Grazing	30-35%	30-35%
14 Days (2-4 Paddocks)	35-40%	40-50%
6-8 Days (3-7 Paddocks)	45-55%	50-55%
2-3 Days (6-15 Paddocks)	55-60%	55-60%
Daily (25-35 Paddocks)	60-70%	55-60%
2/Day (45-60 Paddocks)	70-75%	55-60%

IOWA STATE UNIVERSITY Extension and Outreach

Combination of grazing and feeding

- Strategic supplementation on grass
- Higher stocking rates spring, drylot or sacrifice paddock in summer, graze early fall
- Combination of perennials, annuals and residue

Grazing or harvesting corn crop residue

- · Corn stover underutilized asset
 - 180 bushel corn per acre 2880 lbs. husks and leaves, available to graze or harvest
- Need cooperation between crop farmer and livestock owner
 - Research shows well managed grazing does not reduce subsequent yield
- · Harvesting requires replacing nutrients removed

IOWA STATE UNIVERSITY Extension and Outreach

Potential to graze or harvest cover crops

- Need to balance agronomy and livestock nutrition goals
- Most likely to get yields in spring on late summer/early fall cereal grains
- Insurance, soil, agronomic and livestock interactions with harvest/grazing dates

Iowa producers looking for different cow-calf management systems

- Extended grazing
- Traditional 50/50 hay and graze
- Limited grazing or drylot/confinement
- New Leopold Cow Systems project

IOWA STATE UNIVERSITY Extension and Outreach

Cow herd is expanding – how do we keep profitable?

Iowa Beef Center Cow Systems Project

- Funding from Leopold Center (3 years)
- 27 cooperators in Iowa
- Looking at factors that make different cow calf production systems work

IOWA STATE UNIVERSITY Extension and Outreach

What could the impact be of more diversity?

- Decreased soil erosion
- Improved water quality
- Balance risk with more income streams

Cow calf systems use forages from marginal soils

IOWA STATE UNIVERSITY Extension and Outreach

Resources

- Ag Decision Maker
 - Livestock Enterprise Budgets
 - Crop Budgets
 - Estimated Costs of Pasture and Hay
 - Crop and Livestock Land Use Analyzer
 - http://www.extension.iastate.edu/agdm/

Questions???

- · Iowa Beef Center
 - iowabeefcenter.org
- Joe Sellers
 - -641-203-1270
 - sellers@iastate.edu

