Replacement Female Strategies

Allen Bridges, Ph.D. North Central Research & Outreach Center University of Minnesota

What is the right "equation" for creating the ideal replacement heifer?

Retain heifer or purchase replacement?? Executive Decision Making Systen YES No

Develop or purchase?

- Complex decision, driven by multiple factors
- Should be evaluated yearly
 - Market fluctuations, feed supply, business model, etc.
- Specific for <u>your</u> operation

Develop or purchase?

- "Heifer Conundrum"
- Don't let 10% of herd dictate the decisions made for the other 90%
- Purchased replacement female does not have to be a heifer
- Purchased cows = less calving issues, greater probability of breeding back
- Calving this year or next?
- Longevity in herd

Drivers of choice

<u>Financial</u> Dollars and cents <u>Convenience</u> Management and fence

Financial evaluation tool

Comparing Purchasing vs Raising Beef Replacement Females Created by Dr. Jack Whittier and Kevin Miller; Colorado State University

http://www.ansci.colostate.edu/beef/pdf_files/ Buy-or-Raise-2011-Replacement-Decision-Aid.xls

Current analysis

When does selecting the replacement heifer begin?

- Replacement heifer selection begins at sire selection
 - 85% of genetic make-up of cow herd is contributed by sire selection
- Dam selection is also critical but often less managed on most farms
- What comprises phenotypic selection?

Recommendations when using EPDs

- 1. Prioritize traits of economic importance – Heifer vs. Steer
 - BW, CEd, CEm, WW, YW, MA, SC, STAY, DOC, What is important to your herd, not your neighbors
- Match select traits with environment
 Don't select high milk if don't have enough feed
- 3. "Optimize" rather than "Maximize"
 Don't single trait select!
 - Well-rounded with multiple traits above average

Reproductive goals for heifers

- Reach puberty by 12 to 13 months of age
 - Age at puberty influenced by genotype, nutrition, and environment
- Conception rate after 3rd estrus is ~20% greater compared to conception rate at 1st estrus
- Conceive by 15 months of age
- Calve by 2 years of age
 - Most profitable

Reproductive goals for heifers

- Need minimal assistance calving Selection for growth, BW, and pelvic area
- Rebreed as a 2-yr old cow
- Difficult as cow must partition nutrients into lactation, growth, and reproduction
- Breed heifers 2-3 weeks before mature cows to "buy insurance"

Heifers selection

- Select heifers born in the first half of the calving season
 Easier to reach target weights at breeding
 - Indicative of dams fertility
- Retain heifers with heavy actual weaning weights Cheapest to feed to target weig You can't adjust for day of age at breeding
- Retain 10 to 15% more heifers than replacement rate requires
 ~ 5 to 10% of heifers will fail to conceive
 ~30% of heifers born
- Do not retain heifers with structural defects
- Avoid freemartins
 - Female twin with a bull twin Infertile

Antral follicle count – Future selection criteria?

· Antral follicle count is the assessment of the number of follicle visible on the ovary

- Greater numbers of antral follicles has been associated with greater fertility (Ireland et al., 2008; Cushman et al., 2012)
- Selection of heifers at early age with greater antral follicle count may yield benefits - research ongoing

Pre-weaning growth and puberty

• Many studies have demonstrated that preweaning growth rate has a greater impact on age at puberty than post-weaning growth rate

Ways to Increase WW: 1) Implant – Bad idea 2) Mother Milk Production 3) Creep Feeding 4) Early Weaning

Post-weaning nutrition

- Most common strategy is feeding heifers to reach a "Target Weight" prior to the breeding season
 - Typical: 65% mature body weight (MBW)
 - 1300 lb cow * 0.65 = 845 lb at breeding
 - This is not an average wt of the herd, but rather all heifers should meet or exceed this weight
 - Must know mature body wt of cow herd
 - If I know the WW and 65% MBW target, how do I calculate how much I need to feed?

How much do I feed??

• Example:

WW = 550 lb Target Wt = 845 lb Age at weaning = 220 Age at breeding = 450

> (845-550) (450-220) = 1.28 lb/day

Wiltbank et al., 1985		Desired weight at start of breeding season (target wt)				
		600 lb (~55% MBW)	700 lb (~65% MBW)	Difference		
# of heifers		110	111			
Corn fed (lb)		748	1232	484		
Cost (\$, \$0.11/lb corn)		82	136			
Wt at breeding (lb)		617	714	97		
Showing heat at:						
	20 d	33	63	30		
	40 d	56	80	24		
	60 d	71	92	21		
Preg. after breeding						
	20 d	9	39	30		
	40 d	27	57	30		
	60 d	47	74	27		
Calving %		63	80	17		
Lb of calves weaned		23140	32810	9760		
Lbs/heifer exposed		210	296	86		
\$/heifer exposed (\$1.10/lb)		231	326	95		
\$ return above feed		149	190	41		
Preg. next year		68	85	17		

Feeding strategies

- If there is a wide variation in WW between heifers, it may be beneficial to split the group
 - Prevent larger heifers from gaining to much weight
 - Reduce cost of developing larger heifers
 - Ensure smaller heifers achieve target weight
- Avoid getting heifers to fat
 - Impairs mammary development and reduces milk production
 - Calving difficulty
 - Reduced conception rates

_	Fed to	ogether	Fed Separately		
- Variable	Light	Heavy	Light	Heavy	
Number of heifers	10	10	19	20	
Weaning wt (lbs)	376	475	374	464	
Daily gains (lbs)					
Projected	1.5	1.4	1.7	1.2	
Actual	1.3	1.5	1.8	1.2	
Breeding wt (lbs)					
Projected	715	715	715	715	
Actual	620	719	669	722	
Winter feed cost/head/day	\$0.75	\$0.75	\$0.89	\$0.67	
	Combin	ed \$0.75	Combined \$0.78		

	Fed to	ogether	Fed Separately		
Variable	Light	Heavy	Light	Heavy	
Number of heifers	10	10	19	20	
Age at puberty (days)	423	404	405	389	
Cycling at start of breeding (%)	60	90	79	90	
Pregnant in 45-day breeding season (%)	60	80	79	90	
	Combined 70%		Combined 85%		

Why is achieving puberty prior to breeding so critical?

 Regardless of estrous synchronization and Al or natural service, pubertal heifers conceive earlier in breeding season!

Longevity in the Herd

- Of the heifers that calved with their first calf in the first 21 d period of the calving season at the USMARC:
 - 63.7% of them were still in the herd after 10 calving seasons
 - 54.7% of heifers in 2nd 21 d
- 14.3% of South Dakota heifers remained after 10 calving seasons
 - 6.4% of heifers in 2nd 21 d
- Positive relationship between early calving heifers and longevity in the herd.

E. Mousel, S

Profitability of SD Herds • Mean return per female: • 1st 21 d period \$1,055.69 • Mean return per female: • 2nd 21 d period and after \$705.45 • Mean return per female: • Whole herd \$908.19

E. Mousel, SDS

Growth rate and puberty attainment

Post-AI nutrition and AI pregnancy rate

	Treatment (Trt)				P-value			
	Gain 120% NEm	Maintain 100% NEm	Lose 80% NEm	Trt	Contrast: Gain vs Maintain + Lose	Contrast: Maintain vs Lose		
AI pregnancy rates ¹ , % (n)	72.9% (86/118)	62.3% (71/114)	64.7% (75/116)	0.13	0.05	0.73		
Breeding season pregnancy rates ² , % (n)	94.1% (111/118)	87.7 (100/114)	88.8 (103/116)	0.24	0.106	0.69		

Similar results have been demonstrated in the laboratory of G. Perry (SDSU)

Effect on day 6 embryo quality

Effect of post-Al nutrition on day 6 embryo characteristics: Combined									
TRT	nª	Embryo Recovery (%)	Embryo Stage (n ^b)	Embryo Quality (n ^c)	Access. Sperm (n)	Dead Cells (n)	Total Cells (n)	Percent Live Cells (%)	
GAIN	46	70.8 (46/65)	4.6 ± 0.1	2.0 ± 0.2	22.7 ± 3.8	7.8 ± 0.9	70.6 ± 5.6	83.3 ± 3.0	
LOSE	42	62.1 (42/66)	3.8 ± 0.2	2.8 ± 0.2	16.7 ± 3.8	9.7 ± 1.0	48.9 ± 3.9	71.1 ± 4.1	
P-value		NS	< 0.01	0.02	0.64	0.42	0.03	0.01	
^a Defined as embryo number; not heifer with the exception of recovery rate ^b Stage of development (1-9; 1 = UFO; 9 = expanded hatched blastocyst; per IETS Standards) ^c Quality of embryo (1-5; 1 = excellent; 5 = degenerate; per IETS Standards)									

*No Treatment x Replication Interaction for any variable analyzed so data pooled.

Summary

- Proper heifer selection is critical
- Improper development can result reduced longevity and performance
- Nutrition pre- and post-breeding critical

Thank you

Dr. Allen Bridges North Central Research & Outreach Center University of Minesota gbridges@umn.edu 218-327-4615(office) 218-259-5399 (cell)

